27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The macrolide antibiotic renaissance : The present and future of macrolide antibiotics

      British Journal of Pharmacology
      Wiley

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d6774038e155">Macrolides represent a large family of protein synthesis inhibitors of great clinical interest due to their applicability to human medicine. Macrolides are composed of a macrocyclic lactone of different ring sizes, to which one or more deoxy‐sugar or amino sugar residues are attached. Macrolides act as antibiotics by binding to bacterial 50S ribosomal subunit and interfering with protein synthesis. The high affinity of macrolides for bacterial ribosomes, together with the highly conserved structure of ribosomes across virtually all of the bacterial species, is consistent with their broad‐spectrum activity. Since the discovery of the progenitor macrolide, erythromycin, in 1950, many derivatives have been synthesised, leading to compounds with better bioavailability and acid stability and improved pharmacokinetics. These efforts led to the second generation of macrolides, including well‐known members such as azithromycin and clarithromycin. Subsequently, in order to address increasing antibiotic resistance, a third generation of macrolides displaying improved activity against many macrolide resistant strains was developed. However, these improvements were accompanied with serious side effects, leading to disappointment and causing many researchers to stop working on macrolide derivatives, assuming that this procedure had reached the end. In contrast, a recent published breakthrough introduced a new chemical platform for synthesis and discovery of a wide range of diverse macrolide antibiotics. This chemical synthesis revolution, in combination with reduction in the side effects, namely, ‘Ketek effects’, has led to a macrolide renaissance, increasing the hope for novel and safe therapeutic agents to combat serious human infectious diseases. </p>

          Related collections

          Most cited references193

          • Record: found
          • Abstract: found
          • Article: not found

          Structures of the bacterial ribosome at 3.5 A resolution.

          We describe two structures of the intact bacterial ribosome from Escherichia coli determined to a resolution of 3.5 angstroms by x-ray crystallography. These structures provide a detailed view of the interface between the small and large ribosomal subunits and the conformation of the peptidyl transferase center in the context of the intact ribosome. Differences between the two ribosomes reveal a high degree of flexibility between the head and the rest of the small subunit. Swiveling of the head of the small subunit observed in the present structures, coupled to the ratchet-like motion of the two subunits observed previously, suggests a mechanism for the final movements of messenger RNA (mRNA) and transfer RNAs (tRNAs) during translocation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An evolving hierarchical family classification for glycosyltransferases.

            Glycosyltransferases are a ubiquitous group of enzymes that catalyse the transfer of a sugar moiety from an activated sugar donor onto saccharide or non-saccharide acceptors. Although many glycosyltransferases catalyse chemically similar reactions, presumably through transition states with substantial oxocarbenium ion character, they display remarkable diversity in their donor, acceptor and product specificity and thereby generate a potentially infinite number of glycoconjugates, oligo- and polysaccharides. We have performed a comprehensive survey of glycosyltransferase-related sequences (over 7200 to date) and present here a classification of these enzymes akin to that proposed previously for glycoside hydrolases, into a hierarchical system of families, clans, and folds. This evolving classification rationalises structural and mechanistic investigation, harnesses information from a wide variety of related enzymes to inform cell biology and overcomes recurrent problems in the functional prediction of glycosyltransferase-related open-reading frames. Copyright 2003 Elsevier Science Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bacterial resistance to antibiotics: enzymatic degradation and modification.

              D. Wright (2005)
              Antibiotic resistance can occur via three general mechanisms: prevention of interaction of the drug with target, efflux of the antibiotic from the cell, and direct destruction or modification of the compound. This review discusses the latter mechanisms focusing on the chemical strategy of antibiotic inactivation; these include hydrolysis, group transfer, and redox mechanisms. While hydrolysis is especially important clinically, particularly as applied to beta-lactam antibiotics, the group transfer approaches are the most diverse and include the modification by acyltransfer, phosphorylation, glycosylation, nucleotidylation, ribosylation, and thiol transfer. A unique feature of enzymes that physically modify antibiotics is that these mechanisms alone actively reduce the concentration of drugs in the local environment; therefore, they present a unique challenge to researchers and clinicians considering new approaches to anti-infective therapy. This review will present the current status of knowledge of these aspects of antibiotic resistance and discuss how a thorough understanding of resistance enzyme molecular mechanism, three-dimensional structure, and evolution can be leveraged in combating resistance.
                Bookmark

                Author and article information

                Journal
                British Journal of Pharmacology
                British Journal of Pharmacology
                Wiley
                00071188
                September 2017
                September 10 2017
                : 174
                : 18
                : 2967-2983
                Article
                10.1111/bph.13936
                5573421
                28664582
                795fdc3a-87c7-40d2-b9a2-aa6e8c10383b
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article