12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanism of new optimized Sheng-Mai-San Formula to regulate cardiomyocyte apoptosis through NMDAR pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and objectives

          Ischemic heart failure (HF) has become a disease that seriously endangers people's life and health. As a herbal formula widely used in clinical practice, new optimized Sheng-Mai-San (NO-SMS) has been shown to be significantly effective in improving cardiac function, increasing exercise tolerance, and slowing the progression of myocardial fibrosis in heart failure patients in multi-center clinical studies in various regions of China. In our previous pharmacodynamic and toxicological studies, we found that a medium-dose formulation (8.1 g of raw drug/kg) was the most effective in the treatment of heart failure, but its mechanism of action is still being investigated. The present study is exploring its relationship with cardiomyocyte apoptosis.

          Materials and methods

          We investigated and verified this through two parts of experiments, in vivo and in vitro. Firstly, we prepared male SD rats with heart failure models by ligating the left anterior descending branch of the coronary artery (EF ≤ 50%), which were treated with NO-SMS Formula (8.1 g of raw drug/kg/d), Ifenprodil (5.4 mg/kg/d) or Enalapril (0.9 mg/kg/d) prepared suspensions by gavage for 4 weeks. The cardiac and structural changes were evaluated by echocardiography, H&E, and MASSON staining. The apoptosis of cardiomyocytes in each group was detected by Western blot, qRT-PCR, and ELISA. In vitro cell experiments include H9c2 cardiomyocyte injury induced by H 2O 2 and NMDA respectively, and the groups were incubated with NO-SMS and Ifenprodil-containing serum for 24 h. Apoptosis was detected by Annexin V-FITC/PI double-staining method, and the rest of the assays were consistent with the in vivo experiments.

          Results

          Compared with the model group, the NO-SMS formula group and the Ifenprodil group could significantly improve cardiac function, delay myocardial fibrosis, reduce the expression of pro-apoptotic proteins, mRNA, and the concentration levels of Ca 2+ and ROS in heart failure rats and H9c2 cardiomyocytes with H 2O 2 and NMDA-induced injury, which could significantly reduce the apoptosis rate of damaged cardiomyocytes and effectively inhibit the apoptosis of cardiomyocytes.

          Conclusion

          NO-SMS Formula improved cardiac function, inhibited ventricular remodeling and cardiomyocyte apoptosis in HF rats, and its mechanism may be related to the regulation of the NMDAR signaling pathway, inhibition of large intracellular Ca 2+ inward flow, and ROS production in cardiomyocytes.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Heart Disease and Stroke Statistics—2021 Update: A Report From the American Heart Association

          The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2021 Statistical Update is the product of a full year’s worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year’s edition includes data on the monitoring and benefits of cardiovascular health in the population, an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, the global burden of cardiovascular disease, and further evidence-based approaches to changing behaviors related to cardiovascular disease. Each of the 27 chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. The Statistical Update represents a critical resource for the lay public, policy makers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Epidemiology of heart failure

            The heart failure syndrome has first been described as an emerging epidemic about 25 years ago. Today, because of a growing and ageing population, the total number of heart failure patients still continues to rise. However, the case mix of heart failure seems to be evolving. Incidence has stabilized and may even be decreasing in some populations, but alarming opposite trends have been observed in the relatively young, possibly related to an increase in obesity. In addition, a clear transition towards heart failure with a preserved ejection fraction has occurred. Although this transition is partially artificial, due to improved recognition of heart failure as a disorder affecting the entire left ventricular ejection fraction spectrum, links can be made with the growing burden of obesity‐related diseases and with the ageing of the population. Similarly, evidence suggests that the number of patients with heart failure may be on the rise in low‐income countries struggling under the double burden of communicable diseases and conditions associated with a Western‐type lifestyle. These findings, together with the observation that the mortality rate of heart failure is declining less rapidly than previously, indicate we have not reached the end of the epidemic yet. In this review, the evolving epidemiology of heart failure is put into perspective, to discern major trends and project future directions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fundamental Mechanisms of Regulated Cell Death and Implications for Heart Disease

              Twelve regulated cell death programs have been described. We review in detail the basic biology of nine including death receptor-mediated apoptosis, death receptor-mediated necrosis (necroptosis), mitochondrial-mediated apoptosis, mitochondrial-mediated necrosis, autophagy-dependent cell death, ferroptosis, pyroptosis, parthanatos, and immunogenic cell death. This is followed by a dissection of the roles of these cell death programs in the major cardiac syndromes: myocardial infarction and heart failure. The most important conclusion relevant to heart disease is that regulated forms of cardiomyocyte death play important roles in both myocardial infarction with reperfusion (ischemia/reperfusion) and heart failure. While a role for apoptosis in ischemia/reperfusion cannot be excluded, regulated forms of necrosis, through both death receptor and mitochondrial pathways, are critical. Ferroptosis and parthanatos are also likely important in ischemia/reperfusion, although it is unclear if these entities are functioning as independent death programs or as amplification mechanisms for necrotic cell death. Pyroptosis may also contribute to ischemia/reperfusion injury, but potentially through effects in non-cardiomyocytes. Cardiomyocyte loss through apoptosis and necrosis is also an important component in the pathogenesis of heart failure and is mediated by both death receptor and mitochondrial signaling. Roles for immunogenic cell death in cardiac disease remain to be defined but merit study in this era of immune checkpoint cancer therapy. Biology-based approaches to inhibit cell death in the various cardiac syndromes are also discussed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                29 May 2023
                June 2023
                29 May 2023
                : 9
                : 6
                : e16631
                Affiliations
                [a ]Department of Cardiovascular Diseases, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
                [b ]Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300150, China
                [c ]Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
                [d ]Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
                Author notes
                []Corresponding author. jymao@ 123456126.com
                [∗∗ ]Corresponding author. xlwang1981@ 123456126.com
                [1]

                Contributed to this article equally.

                Article
                S2405-8440(23)03838-0 e16631
                10.1016/j.heliyon.2023.e16631
                10320033
                37416647
                795c7db7-df50-4721-851e-bd3e529039fc
                © 2023 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 11 March 2023
                : 21 May 2023
                : 23 May 2023
                Categories
                Research Article

                no-sms,nmdar pathway,cardiovascular disease,cardiomyocyte apoptosis

                Comments

                Comment on this article