18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Engineering Photomechanical Molecular Crystals to Achieve Extraordinary Expansion Based on Solid-State [2 + 2] Photocycloaddition.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Photomechanical molecular crystals are promising candidates for photoactuators and can potentially be implemented as smart materials in various fields. Here, we synthesized a new molecular crystal, (E)-3-(naphthalen-1-yl)acrylaldehyde malononitrile ((E)-NAAM), that can undergo a solid-state [2 + 2] photocycloaddition reaction under visible light (≥400 nm) illumination. (E)-NAAM microcrystals containing symmetric twinned sealed cavities were prepared using a surfactant-mediated crystal seeded growth method. When exposed to light, the hollow microcrystals exhibited robust photomechanical motions, including bending and dramatic directional expansion of up to 43.1% elongation of the original crystal length before fragmentation due to the photosalient effect. The sealed cavities inside the microcrystals could store different aqueous dye solutions for approximately one month and release the solutions instantly upon light irradiation. A unique slow-fast-slow crystal elongation kinematic process was observed, suggesting significant molecular rearrangements during the illumination period, leading to an average anisotropic crystal elongation of 37.0% (±3.8%). The significant molecular structure and geometry changes accompanying the photocycloaddition reaction, which propels photochemistry to nearly 100% completion, also facilitate photomechanical crystal expansion. Our results provide a possible way to rationally design molecular structures and engineer crystal morphologies to promote more interesting photomechanical behaviors.

          Related collections

          Author and article information

          Journal
          J Am Chem Soc
          Journal of the American Chemical Society
          American Chemical Society (ACS)
          1520-5126
          0002-7863
          Apr 13 2022
          : 144
          : 14
          Affiliations
          [1 ] Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, The People's Republic of China.
          Article
          10.1021/jacs.1c12485
          35289609
          79544f71-639d-4136-bc11-8bd571c17ae9
          History

          Comments

          Comment on this article