13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A systematic evaluation and optimization of automatic detection of ulcers in wireless capsule endoscopy on a large dataset using deep convolutional neural networks.

      1 , , , ,
      Physics in medicine and biology
      IOP Publishing

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Compared with conventional gastroscopy which is invasive and painful, wireless capsule endoscopy (WCE) can provide noninvasive examination of gastrointestinal (GI) tract. The WCE video can effectively support physicians to reach a diagnostic decision while a huge number of images need to be analyzed (more than 50 000 frames per patient). In this paper, we propose a computer-aided diagnosis method called second glance (secG) detection framework for automatic detection of ulcers based on deep convolutional neural networks that provides both classification confidence and bounding box of lesion area. We evaluated its performance on a large dataset that consists of 1504 patient cases (the largest WCE ulcer dataset to our best knowledge, 1076 cases with ulcers, 428 normal cases). We use 15 781 ulcer frames from 753 ulcer cases and 17 138 normal frames from 300 normal cases for training. Validation dataset consists of 2040 ulcer frames from 108 cases and 2319 frames from 43 normal cases. For test, we use 4917 ulcer frames from 215 ulcer cases and 5007 frames from 85 normal cases. Test results demonstrate the 0.9469 ROC-AUC of the proposed secG detection framework outperforms state-of-the-art detection frameworks including Faster-RCNN (0.9014) and SSD-300 (0.8355), which implies the effectiveness of our method. From the ulcer size analysis, we find the detection of ulcers is highly related to the size. For ulcers with size larger than 1% of the full image size, the sensitivity exceeds 92.00%. For ulcers that are smaller than 1% of the full image size, the sensitivity is around 85.00%. The overall sensitivity, specificity and accuracy are 89.71%, 90.48% and 90.10%, at a threshold value of 0.6706, which implies the potential of the proposed method to suppress oversights and to reduce the burden of physicians.

          Related collections

          Author and article information

          Journal
          Phys Med Biol
          Physics in medicine and biology
          IOP Publishing
          1361-6560
          0031-9155
          December 05 2019
          : 64
          : 23
          Affiliations
          [1 ] Key Laboratory of Particle and Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, People's Republic of China. Department of Engineering Physics, Tsinghua University, Beijing 100084, People's Republic of China.
          Article
          10.1088/1361-6560/ab5086
          31645019
          794dd56b-87f4-4625-953b-0acd72fe9f4d
          History

          Comments

          Comment on this article