26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The NDC80 complex proteins Nuf2 and Hec1 make distinct contributions to kinetochore–microtubule attachment in mitosis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The NDC80 complex is known to function in kinetochore-microtubule attachment during mitosis. We analyzed the mitotic roles of three separate structural motifs within the complex and found that the Nuf2 CH domain, the Hec1 CH domain, and the Hec1 tail domain each make distinct contributions at the kinetochore-microtubule interface.

          Abstract

          Successful mitosis requires that kinetochores stably attach to the plus ends of spindle microtubules. Central to generating these attachments is the NDC80 complex, made of the four proteins Spc24, Spc25, Nuf2, and Hec1/Ndc80. Structural studies have revealed that portions of both Hec1 and Nuf2 N termini fold into calponin homology (CH) domains, which are known to mediate microtubule binding in certain proteins. Hec1 also contains a basic, positively charged stretch of amino acids that precedes its CH domain, referred to as the “tail.” Here, using a gene silence and rescue approach in HeLa cells, we show that the CH domain of Hec1, the CH domain of Nuf2, and the Hec1 tail each contributes to kinetochore–microtubule attachment in distinct ways. The most severe defects in kinetochore–microtubule attachment were observed in cells rescued with a Hec1 CH domain mutant, followed by those rescued with a Hec1 tail domain mutant. Cells rescued with Nuf2 CH domain mutants, however, generated stable kinetochore–microtubule attachments but failed to generate wild-type interkinetochore tension and failed to enter anaphase in a timely manner. These data suggest that the CH and tail domains of Hec1 generate essential contacts between kinetochores and microtubules in cells, whereas the Nuf2 CH domain does not.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          The conserved KMN network constitutes the core microtubule-binding site of the kinetochore.

          The microtubule-binding interface of the kinetochore is of central importance in chromosome segregation. Although kinetochore components that stabilize, translocate on, and affect the polymerization state of microtubules have been identified, none have proven essential for kinetochore-microtubule interactions. Here, we examined the conserved KNL-1/Mis12 complex/Ndc80 complex (KMN) network, which is essential for kinetochore-microtubule interactions in vivo. We identified two distinct microtubule-binding activities within the KMN network: one associated with the Ndc80/Nuf2 subunits of the Ndc80 complex, and a second in KNL-1. Formation of the complete KMN network, which additionally requires the Mis12 complex and the Spc24/Spc25 subunits of the Ndc80 complex, synergistically enhances microtubule-binding activity. Phosphorylation by Aurora B, which corrects improper kinetochore-microtubule connections in vivo, reduces the affinity of the Ndc80 complex for microtubules in vitro. Based on these findings, we propose that the conserved KMN network constitutes the core microtubule-binding site of the kinetochore.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores

            The Aurora/Ipl1 family of protein kinases plays multiple roles in mitosis and cytokinesis. Here, we describe ZM447439, a novel selective Aurora kinase inhibitor. Cells treated with ZM447439 progress through interphase, enter mitosis normally, and assemble bipolar spindles. However, chromosome alignment, segregation, and cytokinesis all fail. Despite the presence of maloriented chromosomes, ZM447439-treated cells exit mitosis with normal kinetics, indicating that the spindle checkpoint is compromised. Indeed, ZM447439 prevents mitotic arrest after exposure to paclitaxel. RNA interference experiments suggest that these phenotypes are due to inhibition of Aurora B, not Aurora A or some other kinase. In the absence of Aurora B function, kinetochore localization of the spindle checkpoint components BubR1, Mad2, and Cenp-E is diminished. Furthermore, inhibition of Aurora B kinase activity prevents the rebinding of BubR1 to metaphase kinetochores after a reduction in centromeric tension. Aurora B kinase activity is also required for phosphorylation of BubR1 on entry into mitosis. Finally, we show that BubR1 is not only required for spindle checkpoint function, but is also required for chromosome alignment. Together, these results suggest that by targeting checkpoint proteins to kinetochores, Aurora B couples chromosome alignment with anaphase onset.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore–microtubule attachment and in maintaining the spindle assembly checkpoint

              The proper segregation of sister chromatids in mitosis depends on bipolar attachment of all chromosomes to the mitotic spindle. We have identified the small molecule Hesperadin as an inhibitor of chromosome alignment and segregation. Our data imply that Hesperadin causes this phenotype by inhibiting the function of the mitotic kinase Aurora B. Mammalian cells treated with Hesperadin enter anaphase in the presence of numerous monooriented chromosomes, many of which may have both sister kinetochores attached to one spindle pole (syntelic attachment). Hesperadin also causes cells arrested by taxol or monastrol to enter anaphase within <1 h, whereas cells in nocodazole stay arrested for 3–5 h. Together, our data suggest that Aurora B is required to generate unattached kinetochores on monooriented chromosomes, which in turn could promote bipolar attachment as well as maintain checkpoint signaling.
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Journal
                Mol Biol Cell
                molbiolcell
                mbc
                Mol. Bio. Cell
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                15 March 2011
                : 22
                : 6
                : 759-768
                Affiliations
                [1]Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
                University of California, Berkeley
                Author notes
                *Address correspondence to: Jennifer G. DeLuca: ( jdeluca@ 123456colostate.edu ).
                Article
                E10-08-0671
                10.1091/mbc.E10-08-0671
                3057701
                21270439
                7916b443-8fc6-4b8b-a0bc-85da61f079ee
                © 2011 Sundin et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( http://creativecommons.org/licenses/by-nc-sa/3.0).

                “ASCB®,“ “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell Biology.

                History
                : 05 August 2010
                : 03 January 2011
                : 13 January 2011
                Categories
                Articles
                Cell Cycle

                Molecular biology
                Molecular biology

                Comments

                Comment on this article