36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sialidases from gut bacteria: a mini-review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sialidases are a large group of enzymes, the majority of which catalyses the cleavage of terminal sialic acids from complex carbohydrates on glycoproteins or glycolipids. In the gastrointestinal (GI) tract, sialic acid residues are mostly found in terminal location of mucins via α2-3/6 glycosidic linkages. Many enteric commensal and pathogenic bacteria can utilize sialic acids as a nutrient source, but not all express the sialidases that are required to release free sialic acid. Sialidases encoded by gut bacteria vary in terms of their substrate specificity and their enzymatic reaction. Most are hydrolytic sialidases, which release free sialic acid from sialylated substrates. However, there are also examples with transglycosylation activities. Recently, a third class of sialidases, intramolecular trans-sialidase (IT-sialidase), has been discovered in gut microbiota, releasing (2,7-anhydro-Neu5Ac) 2,7-anydro- N-acetylneuraminic acid instead of sialic acid. Reaction specificity varies, with hydrolytic sialidases demonstrating broad activity against α2,3-, α2,6- and α2,8-linked substrates, whereas IT-sialidases tend to be specific for α2,3-linked substrates. In this mini-review, we summarize the current knowledge on the structural and biochemical properties of sialidases involved in the interaction between gut bacteria and epithelial surfaces.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions.

          The normal intestinal microbiota inhabits the colon mucus without triggering an inflammatory response. The reason for this and how the intestinal mucus of the colon is organized have begun to be unraveled. The mucus is organized in two layers: an inner, stratified mucus layer that is firmly adherent to the epithelial cells and approximately 50 μm thick; and an outer, nonattached layer that is usually approximately 100 μm thick as measured in mouse. These mucus layers are organized around the highly glycosylated MUC2 mucin, forming a large, net-like polymer that is secreted by the goblet cells. The inner mucus layer is dense and does not allow bacteria to penetrate, thus keeping the epithelial cell surface free from bacteria. The inner mucus layer is converted into the outer layer, which is the habitat of the commensal flora. The outer mucus layer has an expanded volume due to proteolytic activities provided by the host but probably also caused by commensal bacterial proteases and glycosidases. The numerous O-glycans on the MUC2 mucin not only serve as nutrients for the bacteria but also as attachment sites and, as such, probably contribute to the selection of the species-specific colon flora. This observation that normal human individuals carry a uniform MUC2 mucin glycan array in colon may indicate such a specific selection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome.

            Following birth, the breast-fed infant gastrointestinal tract is rapidly colonized by a microbial consortium often dominated by bifidobacteria. Accordingly, the complete genome sequence of Bifidobacterium longum subsp. infantis ATCC15697 reflects a competitive nutrient-utilization strategy targeting milk-borne molecules which lack a nutritive value to the neonate. Several chromosomal loci reflect potential adaptation to the infant host including a 43 kbp cluster encoding catabolic genes, extracellular solute binding proteins and permeases predicted to be active on milk oligosaccharides. An examination of in vivo metabolism has detected the hallmarks of milk oligosaccharide utilization via the central fermentative pathway using metabolomic and proteomic approaches. Finally, conservation of gene clusters in multiple isolates corroborates the genomic mechanism underlying milk utilization for this infant-associated phylotype.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mucins: a biologically relevant glycan barrier in mucosal protection.

              The mucins found as components of mucus gel layers at mucosal surfaces throughout the body play roles in protection as part of the defensive barrier on an organ and tissue specific basis.
                Bookmark

                Author and article information

                Journal
                Biochem Soc Trans
                Biochem. Soc. Trans
                ppbiost
                BST
                Biochemical Society Transactions
                Portland Press Ltd.
                0300-5127
                1470-8752
                9 February 2016
                15 February 2016
                : 44
                : 1 ( displayID: 1 )
                : 166-175
                Affiliations
                [* ]Institute of Food Research, The Gut Health and Food Safety Institute Strategic Programme, Norwich Research Park, Norwich NR4 7UA, U.K.
                []Biomolecular Sciences Building, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
                Author notes
                [ 1 ]To whom correspondence should be addressed (email nathalie.juge@ 123456ifr.ac.uk ).
                Article
                BST20150226
                10.1042/BST20150226
                4747158
                26862202
                790c6ec9-45bb-44ff-9714-9b43270af48c
                © 2016 Authors

                This is an open access article published by Portland Press Limited and distributed under the Creative Commons Attribution Licence 3.0.

                History
                : 13 November 2015
                Page count
                Figures: 3, Tables: 1, References: 83, Pages: 10
                Categories
                Biochemical Society Focused Meetings
                Carbohydrate Active Enzymes in Medicine and Biotechnology
                Carbohydrate Active Enzymes in Medicine and Biotechnology
                S7

                Biochemistry
                sialidase,gut bacteria,gut microbiota,glycoside hydrolase,sialic acid,mucin degradation
                Biochemistry
                sialidase, gut bacteria, gut microbiota, glycoside hydrolase, sialic acid, mucin degradation

                Comments

                Comment on this article