2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Meiotic recombination: insights into its mechanisms and its role in human reproduction with a special focus on non-obstructive azoospermia

      , , , , , , ,
      Human Reproduction Update
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          BACKGROUND

          Meiosis is an essential stage in the life cycle of sexually reproducing species, underlying formation of haploid gametes and serving as the basis of genetic diversity. A central mechanism of meiosis is recombination between homologous chromosomes, during which programmed DNA double-strand breaks (DSBs) are sequentially repaired to form the crossovers essential for faithful chromosomal segregation. Aberrant meiotic recombination often leads to gametogenic failure or produces aneuploid gametes resulting in subfertility or infertility, miscarriage or birth defects.

          OBJECTIVE AND RATIONALE

          The goal of this review was to characterize the molecular mechanisms of meiotic recombination and related human infertility disorders, particularly male infertility caused by non-obstructive azoospermia (NOA).

          SEARCH METHODS

          Our search included PubMed database articles, focusing mainly on English-language publications dated between January 2016 and February 2022. The search term ‘meiosis’ was combined with the following keywords: meiotic initiation, chromosome pairing, homologous recombination, chromosome axis, DSB, DSB repair, crossover, meiotic sex chromosome inactivation, meiotic checkpoints, meiotic arrest, NOA, premature ovarian insufficiency (POI) or premature ovarian failure, treatment and cancer. In addition, references within these articles were used to identify additional studies.

          OUTCOMES

          The preliminary search generated ∼3500 records. The majority of articles were identified as meeting abstracts or duplicates, contained non-English text or provided insufficient data and were therefore eliminated. A total of 271 articles associated with meiotic recombination were included in the final analysis. This review provides an overview of molecules and mechanisms involved in meiotic recombination processes, specifically meiosis-specific chromosome structures, DSB formation, homology search, formation of recombination intermediates and crossover formation. The cumulative results suggest that meiosis is regulated sequentially by a series of meiotic recombination genes and proteins. Importantly, mutations in these genes often affect meiotic progression, activating meiotic checkpoints, causing germ cell arrest and leading to subfertility or infertility. At least 26 meiotic recombination-related genes have been reported to be mutated in NOA in men, and 10 of these genes are mutated in POI in women. This suggests that variants of meiotic recombination-related genes can cause human subfertility or infertility, especially NOA.

          WIDER IMPLICATIONS

          Understanding the processes of homologous chromosome pairing, recombination and timely resolution of homologous chromosomes may provide guidance for the analysis of potential monogenetic causes of human subfertility or infertility and the development of personalized treatments. In clinical practice, we can develop a meiotic recombination-related gene panel to screen for gene mutations in individuals with subfertility or infertility. Testicular sperm extraction should not be recommended when an NOA-affected individual carries definite disease-causing mutations of a meiotic gene, so as to avoid the unnecessary invasive diagnosis. Risk of ovarian dysfunction should be evaluated if a woman carries meiotic recombination-related gene mutations. It may be possible to improve or restore fertility through manipulation of meiotic recombination-related genes in the future.

          Related collections

          Most cited references270

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A unique view on male infertility around the globe

          Background Infertility affects an estimated 15% of couples globally, amounting to 48.5 million couples. Males are found to be solely responsible for 20-30% of infertility cases and contribute to 50% of cases overall. However, this number does not accurately represent all regions of the world. Indeed, on a global level, there is a lack of accurate statistics on rates of male infertility. Our report examines major regions of the world and reports rates of male infertility based on data on female infertility. Methods Our search consisted of systematic reviews, meta-analyses, and population-based studies by searching the terms “epidemiology, male infertility, and prevalence.” We identified 16 articles for detailed study. We typically used the assumption that 50% of all cases of infertility are due to female factors alone, 20-30% are due to male factors alone, and the remaining 20-30% are due to a combination of male and female factors. Therefore, in regions of the world where male factor or rates of male infertility were not reported, we used this assumption to calculate general rates of male factor infertility. Results Our calculated data showed that the distribution of infertility due to male factor ranged from 20% to 70% and that the percentage of infertile men ranged from 2·5% to 12%. Infertility rates were highest in Africa and Central/Eastern Europe. Additionally, according to a variety of sources, rates of male infertility in North America, Australia, and Central and Eastern Europe varied from 4 5-6%, 9%, and 8-12%, respectively. Conclusion This study demonstrates a novel and unique way to calculate the distribution of male infertility around the world. According to our results, at least 30 million men worldwide are infertile with the highest rates in Africa and Eastern Europe. Results indicate further research is needed regarding etiology and treatment, reduce stigma & cultural barriers, and establish a more precise calculation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome.

            Providing accurate estimates of cancer risks is a major challenge in the clinical management of Lynch syndrome. To estimate the age-specific cumulative risks of developing various tumors using a large series of families with mutations of the MLH1, MSH2, and MSH6 genes. Families with Lynch syndrome enrolled between January 1, 2006, and December 31, 2009, from 40 French cancer genetics clinics participating in the ERISCAM (Estimation des Risques de Cancer chez les porteurs de mutation des gènes MMR) study; 537 families with segregating mutated genes (248 with MLH1; 256 with MSH2; and 33 with MSH6) were analyzed. Age-specific cumulative cancer risks estimated using the genotype restricted likelihood (GRL) method accounting for ascertainment bias. Significant differences in estimated cumulative cancer risk were found between the 3 mutated genes (P = .01). The estimated cumulative risks of colorectal cancer by age 70 years were 41% (95% confidence intervals [CI], 25%-70%) for MLH1 mutation carriers, 48% (95% CI, 30%-77%) for MSH2, and 12% (95% CI, 8%-22%) for MSH6. For endometrial cancer, corresponding risks were 54% (95% CI, 20%-80%), 21% (95% CI, 8%-77%), and 16% (95% CI, 8%-32%). For ovarian cancer, they were 20% (95% CI, 1%-65%), 24% (95% CI, 3%-52%), and 1% (95% CI, 0%-3%). The estimated cumulative risks by age 40 years did not exceed 2% (95% CI, 0%-7%) for endometrial cancer nor 1% (95% CI, 0%-3%) for ovarian cancer, irrespective of the gene. The estimated lifetime risks for other tumor types did not exceed 3% with any of the gene mutations. MSH6 mutations are associated with markedly lower cancer risks than MLH1 or MSH2 mutations. Lifetime ovarian and endometrial cancer risks associated with MLH1 or MSH2 mutations were high but do not increase appreciably until after the age of 40 years.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Spermatogenesis: The Commitment to Meiosis.

              Mammalian spermatogenesis requires a stem cell pool, a period of amplification of cell numbers, the completion of reduction division to haploid cells (meiosis), and the morphological transformation of the haploid cells into spermatozoa (spermiogenesis). The net result of these processes is the production of massive numbers of spermatozoa over the reproductive lifetime of the animal. One study that utilized homogenization-resistant spermatids as the standard determined that human daily sperm production (dsp) was at 45 million per day per testis (60). For each human that means ∼1,000 sperm are produced per second. A key to this level of gamete production is the organization and architecture of the mammalian testes that results in continuous sperm production. The seemingly complex repetitious relationship of cells termed the "cycle of the seminiferous epithelium" is driven by the continuous commitment of undifferentiated spermatogonia to meiosis and the period of time required to form spermatozoa. This commitment termed the A to A1 transition requires the action of retinoic acid (RA) on the undifferentiated spermatogonia or prospermatogonia. In stages VII to IX of the cycle of the seminiferous epithelium, Sertoli cells and germ cells are influenced by pulses of RA. These pulses of RA move along the seminiferous tubules coincident with the spermatogenic wave, presumably undergoing constant synthesis and degradation. The RA pulse then serves as a trigger to commit undifferentiated progenitor cells to the rigidly timed pathway into meiosis and spermatid differentiation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Human Reproduction Update
                Oxford University Press (OUP)
                1355-4786
                1460-2369
                December 01 2022
                November 02 2022
                May 25 2022
                December 01 2022
                November 02 2022
                May 25 2022
                : 28
                : 6
                : 763-797
                Article
                10.1093/humupd/dmac024
                35613017
                78f245db-4ddc-4e41-bcf9-5b9fc58c013e
                © 2022

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article