20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      JSI-124 Suppresses Invasion and Angiogenesis of Glioblastoma Cells In Vitro

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glioblastoma multiforme (GBM) is one of the utmost malignant tumors. Excessive angiogenesis and invasiveness are the major reasons for their uncontrolled growth and resistance toward conventional strategies resulting in poor prognosis. In this study, we found that low-dose JSI-124 reduced invasiveness and tumorigenicity of GBM cells. JSI-124 effectively inhibited VEGF expression in GBM cells. In a coculture study, JSI-124 completely prevented U87MG cell–mediated capillary formation of HUVECs and the migration of HUVECs when cultured alone or cocultured with U87MG cells. Furthermore, JSI-124 inhibited VEGF-induced cell proliferation, motility, invasion and the formation of capillary-like structures in HUVECs in a dose-dependent manner. JSI-124 suppressed VEGF-induced p-VEGFR2 activity through STAT3 signaling cascade in HUVECs. Immunohistochemistry analysis showed that the expression of CD34, Ki67, p-STAT3 and p-VEGFR2 protein in xenografts was remarkably decreased. Taken together, our findings provide the first evidence that JSI-124 effectively inhibits tumor angiogenesis and invasion, which might be a viable drug in anti-angiogenesis and anti-invasion therapies.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Angiogenesis in cancer, vascular, rheumatoid and other disease.

          J Folkman (1995)
          Recent discoveries of endogenous negative regulators of angiogenesis, thrombospondin, angiostatin and glioma-derived angiogenesis inhibitory factor, all associated with neovascularized tumours, suggest a new paradigm of tumorigenesis. It is now helpful to think of the switch to the angiogenic phenotype as a net balance of positive and negative regulators of blood vessel growth. The extent to which the negative regulators are decreased during this switch may dictate whether a primary tumour grows rapidly or slowly and whether metastases grow at all.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            VEGF as a Key Mediator of Angiogenesis in Cancer

            Vascular endothelial growth factor (VEGF) is a homodimeric glycoprotein with a molecular weight of approximately 45 kDa. It is the key mediator of angiogenesis (the formation of new blood vessels), and binds two VEGF receptors (VEGF receptor-1 and VEGF receptor-2), which are expressed on vascular endothelial cells. In healthy humans, VEGF promotes angiogenesis in embryonic development and is important in wound healing in adults. VEGF is the key mediator of angiogenesis in cancer, in which it is up-regulated by oncogene expression, a variety of growth factors and also hypoxia. Angiogenesis is essential for cancer development and growth: before a tumor can grow beyond 1–2 mm, it requires blood vessels for nutrients and oxygen. The production of VEGF and other growth factors by the tumor results in the ‘angiogenic switch’, where new vasculature is formed in and around the tumor, allowing it to grow exponentially. Tumor vasculature formed under the influence of VEGF is structurally and functionally abnormal. Blood vessels are irregularly shaped, tortuous, have dead ends and are not organized into venules, arterioles and capillaries. They are also leaky and hemorrhagic, which leads to high interstitial pressure. These characteristics mean that tumor blood flow is suboptimal, resulting in hypoxia and further VEGF production. This central role of VEGF in the production of tumor vasculature makes it a rational target for anticancer therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Angiogenesis in brain tumours.

              Despite aggressive surgery, radiotherapy and chemotherapy, malignant gliomas remain uniformly fatal. To progress, these tumours stimulate the formation of new blood vessels through processes driven primarily by vascular endothelial growth factor (VEGF). However, the resulting vessels are structurally and functionally abnormal, and contribute to a hostile microenvironment (low oxygen tension and high interstitial fluid pressure) that selects for a more malignant phenotype with increased morbidity and mortality. Emerging preclinical and clinical data indicate that anti-VEGF therapies are potentially effective in glioblastoma--the most frequent primary brain tumour--and can transiently normalize tumour vessels. This creates a window of opportunity for optimally combining chemotherapeutics and radiation.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                19 March 2015
                2015
                : 10
                : 3
                : e0118894
                Affiliations
                [1 ]Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, P.R. China
                [2 ]Brain Science Research Institute, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, P.R. China
                [3 ]Institute of Basic Medical Sciences and Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 44 Wenhua Xi Road, Jinan, 250012, P.R. China
                [4 ]Department of Neurosurgery, Central Hospital of Zibo City, 54 Gongqingtuan Xi Road, Zibo, 255036, P.R. China
                Medical College of Wisconsin, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: GY. Performed the experiments: GY SY. Analyzed the data: HX. Contributed reagents/materials/analysis tools: PZ JS. Wrote the paper: GY GL.

                Article
                PONE-D-14-04189
                10.1371/journal.pone.0118894
                4366361
                25789853
                78da3a0d-681a-4884-b035-75529cd25d9a
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 28 January 2014
                : 13 January 2015
                Page count
                Figures: 10, Tables: 0, Pages: 18
                Funding
                This work was supported by Natural Science Foundation of China (81172403 and 81372719) and Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (BS2010SW013). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article