9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Low-intensity pulsed ultrasound promotes the osteogenesis of mechanical force-treated periodontal ligament cells via Piezo1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Low-intensity pulsed ultrasound (LIPUS) can accelerate tooth movement and preserve tooth and bone integrity during orthodontic treatment. However, the mechanisms by which LIPUS affects tissue remodeling during orthodontic tooth movement (OTM) remain unclear. Periodontal ligament cells (PDLCs) are pivotal in maintaining periodontal tissue equilibrium when subjected to mechanical stimuli. One notable mechano-sensitive ion channel, Piezo1, can modulate cellular function in response to mechanical cues. This study aimed to elucidate the involvement of Piezo1 in the osteogenic response of force-treated PDLCs when stimulated by LIPUS.

          Method

          After establishing rat OTM models, LIPUS was used to stimulate rats locally. OTM distance and alveolar bone density were assessed using micro-computed tomography, and histological analyses included hematoxylin and eosin staining, tartrate-resistant acid phosphatase staining and immunohistochemical staining. GsMTx4 and Yoda1 were respectively utilized for Piezo1 functional inhibition and activation experiments in rats. We isolated human PDLCs (hPDLCs) in vitro and evaluated the effects of LIPUS on the osteogenic differentiation of force-treated hPDLCs using real-time quantitative PCR, Western blot, alkaline phosphatase and alizarin red staining. Small interfering RNA and Yoda1 were employed to validate the role of Piezo1 in this process.

          Results

          LIPUS promoted osteoclast differentiation and accelerated OTM in rats. Furthermore, LIPUS alleviated alveolar bone resorption under pressure and enhanced osteogenesis of force-treated PDLCs both in vivo and in vitro by downregulating Piezo1 expression. Subsequent administration of GsMTx4 in rats and siPIEZO1 transfection in hPDLCs attenuated the inhibitory effect on osteogenic differentiation under pressure, whereas LIPUS efficacy was partially mitigated. Yoda1 treatment inhibited osteogenic differentiation of hPDLCs, resulting in reduced expression of Collagen Ⅰα1 and osteocalcin in the periodontal ligament. However, LIPUS administration was able to counteract these effects.

          Conclusion

          This research unveils that LIPUS promotes the osteogenesis of force-treated PDLCs via downregulating Piezo1.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels.

          Mechanical stimuli drive many physiological processes, including touch and pain sensation, hearing, and blood pressure regulation. Mechanically activated (MA) cation channel activities have been recorded in many cells, but the responsible molecules have not been identified. We characterized a rapidly adapting MA current in a mouse neuroblastoma cell line. Expression profiling and RNA interference knockdown of candidate genes identified Piezo1 (Fam38A) to be required for MA currents in these cells. Piezo1 and related Piezo2 (Fam38B) are vertebrate multipass transmembrane proteins with homologs in invertebrates, plants, and protozoa. Overexpression of mouse Piezo1 or Piezo2 induced two kinetically distinct MA currents. Piezos are expressed in several tissues, and knockdown of Piezo2 in dorsal root ganglia neurons specifically reduced rapidly adapting MA currents. We propose that Piezos are components of MA cation channels.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Investigation of multipotent postnatal stem cells from human periodontal ligament.

            Periodontal diseases that lead to the destruction of periodontal tissues--including periodontal ligament (PDL), cementum, and bone--are a major cause of tooth loss in adults and are a substantial public-health burden worldwide. PDL is a specialised connective tissue that connects cementum and alveolar bone to maintain and support teeth in situ and preserve tissue homoeostasis. We investigated the notion that human PDL contains stem cells that could be used to regenerate periodontal tissue. PDL tissue was obtained from 25 surgically extracted human third molars and used to isolate PDL stem cells (PDLSCs) by single-colony selection and magnetic activated cell sorting. Immunohistochemical staining, RT-PCR, and northern and western blot analyses were used to identify putative stem-cell markers. Human PDLSCs were transplanted into immunocompromised mice (n=12) and rats (n=6) to assess capacity for tissue regeneration and periodontal repair. Findings PDLSCs expressed the mesenchymal stem-cell markers STRO-1 and CD146/MUC18. Under defined culture conditions, PDLSCs differentiated into cementoblast-like cells, adipocytes, and collagen-forming cells. When transplanted into immunocompromised rodents, PDLSCs showed the capacity to generate a cementum/PDL-like structure and contribute to periodontal tissue repair. Our findings suggest that PDL contains stem cells that have the potential to generate cementum/PDL-like tissue in vivo. Transplantation of these cells, which can be obtained from an easily accessible tissue resource and expanded ex vivo, might hold promise as a therapeutic approach for reconstruction of tissues destroyed by periodontal diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4.

              Cells can respond to mechanical stress by gating mechanosensitive ion channels (MSCs). The cloning of Piezo1, a eukaryotic cation selective MSC, defines a new system for studying mechanical transduction at the cellular level. Because Piezo1 has electrophysiological properties similar to those of endogenous cationic MSCs that are selectively inhibited by the peptide GsMTx4, we tested whether the peptide targets Piezo1 activity. Extracellular GsMTx4 at micromolar concentrations reversibly inhibited ∼80% of the mechanically induced current of outside-out patches from transfected HEK293 cells. The inhibition was voltage insensitive, and as seen with endogenous MSCs, the mirror image d enantiomer inhibited like the l. The rate constants for binding and unbinding based on Piezo1 current kinetics provided association and dissociation rates of 7.0 × 10(5) M(-1) s(-1) and 0.11 s(-1), respectively, and a K(D) of ∼155 nM, similar to values previously reported for endogenous MSCs. Consistent with predicted gating modifier behavior, GsMTx4 produced an ∼30 mmHg rightward shift in the pressure-gating curve and was active on closed channels. In contrast, streptomycin, a nonspecific inhibitor of cationic MSCs, showed the use-dependent inhibition characteristic of open channel block. The peptide did not block currents of the mechanical channel TREK-1 on outside-out patches. Whole-cell Piezo1 currents were also reversibly inhibited by GsMTx4, and although the off rate was nearly identical to that of outside-out patches, differences were observed for the on rate. The ability of GsMTx4 to target the mechanosensitivity of Piezo1 supports the use of this channel in high-throughput screens for pharmacological agents and diagnostic assays. © 2011 American Chemical Society
                Bookmark

                Author and article information

                Contributors
                Role: Role: Role: Role: Role: Role: Role:
                Role: Role: Role: Role: Role: Role: Role:
                Role: Role: Role: Role: Role:
                Role: Role:
                Role: Role:
                Role: Role:
                URI : https://loop.frontiersin.org/people/2672850/overviewRole: Role: Role: Role: Role: Role: Role:
                URI : https://loop.frontiersin.org/people/614331/overviewRole: Role: Role: Role: Role: Role: Role:
                URI : https://loop.frontiersin.org/people/1748950/overviewRole: Role: Role: Role: Role: Role: Role:
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                17 April 2024
                2024
                : 12
                : 1347406
                Affiliations
                [1] 1 Department of Orthodontics , Peking University School and Hospital of Stomatology , Haidian, Beijing, China
                [2] 2 National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology , Haidian, Beijing, China
                [3] 3 Beijing Key Laboratory of Digital Stomatology , Haidian, Beijing, China
                [4] 4 Center of Digital Dentistry , Peking University School and Hospital of Stomatology , Haidian, Beijing, China
                [5] 5 Central Laboratory , Peking University School and Hospital of Stomatology , Haidian, Beijing, China
                Author notes

                Edited by: Caroline Curtin, Royal College of Surgeons in Ireland, Ireland

                Reviewed by: Fang Hua, Wuhan University, China

                Jose Mauro Granjeiro, Quality and Technology, Brazil

                Agnes Schröder, University Hospital Regensburg, Germany

                *Correspondence: Yixiang Wang, kqwangyx@ 123456bjmu.edu.cn ; Jiuhui Jiang, kqjiangjiuhui@ 123456bjmu.edu.cn
                [ † ]

                ORCID: Yixiang Wang, orcid.org/0000-0001-5291-9826; Jiuhui Jiang, orcid.org/0000-0003-4881-5949

                [ ‡ ]

                These authors have contributed equally to this work and share senior authorship

                Article
                1347406
                10.3389/fbioe.2024.1347406
                11061374
                38694622
                78d64ea0-fdec-4fc8-9b53-58ae25e6ade8
                Copyright © 2024 Zheng, Wu, Wang, Li, Tang, Cui, Li, Wang and Jiang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 November 2023
                : 03 April 2024
                Funding
                Funded by: Beijing Municipal Natural Science Foundation , doi 10.13039/501100005089;
                The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This study was financially supported by grants from the Beijing Natural Science Foundation (No. 7232219).
                Categories
                Bioengineering and Biotechnology
                Original Research
                Custom metadata
                Cell and Gene Therapy

                low-intensity pulsed ultrasound,orthodontic tooth movement,periodontal ligament cells,osteogenesis,piezo1

                Comments

                Comment on this article