4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The impact of climate oscillations on the surface energy budget over the Greenland Ice Sheet in a changing climate

      , , , , ,
      The Cryosphere
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. Climate change is particularly strong in Greenland, primarily as a result of changes in the transport of heat and moisture from lower latitudes. The atmospheric structures involved influence the surface mass balance (SMB) of the Greenland Ice Sheet (GrIS), and their patterns are largely explained by climate oscillations, which describe the internal climate variability. By using k-means clustering, we name the combination of the Greenland Blocking Index, the North Atlantic Oscillation index and the vertically integrated water vapor as NAG (North Atlantic influence on Greenland) with the optimal solution of three clusters (positive, neutral and negative phase). With the support of a polar-adapted regional climate model, typical climate features marked under certain NAG phases are inter-seasonally and regionally analyzed in order to assess the impact of large-scale systems from the North Atlantic on the surface energy budget (SEB) components over the GrIS. Given the pronounced summer mass loss in recent decades (1991–2020), we investigate spatio-temporal changes in SEB components within NAG phases in comparison to the reference period 1959–1990. We report significant atmospheric warming and moistening across all NAG phases. The pronounced atmospheric warming in conjunction with the increase in tropospheric water vapor enhance incoming longwave radiation and thus contribute to surface warming. Surface warming is most evident in winter, although its magnitude and spatial extent depend on the NAG phase. In summer, increases in net shortwave radiation are mainly connected to blocking systems (+ NAG), and their drivers are regionally different. In the southern part of Greenland, the atmosphere has become optically thinner due to the decrease in water vapor, thus allowing more incoming shortwave radiation to reach the surface. However, we find evidence that, in the southern regions, changes in net longwave radiation balance changes in net shortwave radiation, suggesting that the turbulent fluxes control the recent SEB changes. In contrast to South Greenland under + NAG, the moistening of North Greenland has contributed to decreases in surface albedo and has enhanced solar radiation absorption. Regardless of the NAG phase, increases in multiple atmospheric variables (e.g., integrated water vapor and net longwave radiation) are found across the northern parts of Greenland, suggesting that atmospheric drivers beyond heat and moisture originated from the North Atlantic. Especially in the northern ablation zone, sensible heat flux has significantly increased in summer due to larger vertical and horizontal temperature gradients combined with stronger near-surface winds. We attribute the near-surface wind intensification to the emerging open-water feedback, whereby surface pressure gradients between the ice/snow-covered surface and adjacent open seas are intensified.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: not found
          • Article: not found

          The ERA5 Global Reanalysis

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The ERA-Interim reanalysis: configuration and performance of the data assimilation system

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The NCEP/NCAR 40-Year Reanalysis Project

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                The Cryosphere
                The Cryosphere
                Copernicus GmbH
                1994-0424
                2022
                August 29 2022
                : 16
                : 8
                : 3375-3391
                Article
                10.5194/tc-16-3375-2022
                78c9ae28-fcf2-4dd3-b2b4-85810c9a8956
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article