0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease

      review-article
      1 , , 1 , 2 , 2 ,
      Cell Research
      Springer Nature Singapore
      Cell biology, Developmental biology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transforming growth factor-βs (TGF-βs) and bone morphometric proteins (BMPs) belong to the TGF-β superfamily and perform essential functions during osteoblast and chondrocyte lineage commitment and differentiation, skeletal development, and homeostasis. TGF-βs and BMPs transduce signals through SMAD-dependent and -independent pathways; specifically, they recruit different receptor heterotetramers and R-Smad complexes, resulting in unique biological readouts. BMPs promote osteogenesis, osteoclastogenesis, and chondrogenesis at all differentiation stages, while TGF-βs play different roles in a stage-dependent manner. BMPs and TGF-β have opposite functions in articular cartilage homeostasis. Moreover, TGF-β has a specific role in maintaining the osteocyte network. The precise activation of BMP and TGF-β signaling requires regulatory machinery at multiple levels, including latency control in the matrix, extracellular antagonists, ubiquitination and phosphorylation in the cytoplasm, nucleus-cytoplasm transportation, and transcriptional co-regulation in the nuclei. This review weaves the background information with the latest advances in the signaling facilitated by TGF-βs and BMPs, and the advanced understanding of their diverse physiological functions and regulations. This review also summarizes the human diseases and mouse models associated with disordered TGF-β and BMP signaling. A more precise understanding of the BMP and TGF-β signaling could facilitate the development of bona fide clinical applications in treating bone and cartilage disorders.

          Related collections

          Most cited references337

          • Record: found
          • Abstract: found
          • Article: not found

          Latent TGF-β structure and activation.

          Transforming growth factor (TGF)-β is stored in the extracellular matrix as a latent complex with its prodomain. Activation of TGF-β1 requires the binding of α(v) integrin to an RGD sequence in the prodomain and exertion of force on this domain, which is held in the extracellular matrix by latent TGF-β binding proteins. Crystals of dimeric porcine proTGF-β1 reveal a ring-shaped complex, a novel fold for the prodomain, and show how the prodomain shields the growth factor from recognition by receptors and alters its conformation. Complex formation between α(v)β(6) integrin and the prodomain is insufficient for TGF-β1 release. Force-dependent activation requires unfastening of a 'straitjacket' that encircles each growth-factor monomer at a position that can be locked by a disulphide bond. Sequences of all 33 TGF-β family members indicate a similar prodomain fold. The structure provides insights into the regulation of a family of growth and differentiation factors of fundamental importance in morphogenesis and homeostasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Specificity, versatility, and control of TGF-β family signaling

            Encoded in mammalian cells by 33 genes, the transforming growth factor–β (TGF-β) family of secreted, homodimeric and heterodimeric proteins controls the differentiation of most, if not all, cell lineages and many aspects of cell and tissue physiology in multicellular eukaryotes. Deregulation of TGF-β family signaling leads to developmental anomalies and disease, whereas enhanced TGF-β signaling contributes to cancer and fibrosis. Here, we review the fundamentals of the signaling mechanisms that are initiated upon TGF-β ligand binding to its cell surface receptors and the dependence of the signaling responses on input from and cooperation with other signaling pathways. We discuss how cells exquisitely control the functional presentation and activation of heteromeric receptor complexes of transmembrane, dual-specificity kinases and, thus, define their context-dependent responsiveness to ligands. We also introduce the mechanisms through which proteins called Smads act as intracellular effectors of ligand-induced gene expression responses and show that the specificity and impressive versatility of Smad signaling depend on cross-talk from other pathways. Last, we discuss how non-Smad signaling mechanisms, initiated by distinct ligand-activated receptor complexes, complement Smad signaling and thus contribute to cellular responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inhibition of TGF–β signaling in subchondral bone mesenchymal stem cells attenuates osteoarthritis

              Osteoarthritis is a highly prevalent and debilitating joint disorder. There is no effective medical therapy for osteoarthritis due to limited understanding of osteoarthritis pathogenesis. We show that TGF–β1 is activated in the subchondral bone in response to altered mechanical loading in an anterior cruciate ligament transection (ACLT) osteoarthritis mouse model. TGF–β1 concentrations also increased in human osteoarthritis subchondral bone. High concentrations of TGF–β1 induced formation of nestin+ mesenchymal stem cell (MSC) clusters leading to aberrant bone formation accompanied by increased angiogenesis. Transgenic expression of active TGF–β1 in osteoblastic cells induced osteoarthritis. Inhibition of TGF–β activity in subchondral bone attenuated degeneration of osteoarthritis articular cartilage. Notably, knockout of the TGF–β type II receptor (TβRII) in nestin+ MSCs reduced development of osteoarthritis in ACLT mice. Thus, high concentrations of active TGF–β1 in the subchondral bone initiated the pathological changes of osteoarthritis, inhibition of which could be a potential therapeutic approach.
                Bookmark

                Author and article information

                Contributors
                mengruiwu@zju.edu.cn
                yli81@tulane.edu
                Journal
                Cell Res
                Cell Res
                Cell Research
                Springer Nature Singapore (Singapore )
                1001-0602
                1748-7838
                24 January 2024
                24 January 2024
                February 2024
                : 34
                : 2
                : 101-123
                Affiliations
                [1 ]Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, ( https://ror.org/00a2xv884) Hangzhou, Zhejiang China
                [2 ]Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, ( https://ror.org/04vmvtb21) New Orleans, LA USA
                Author information
                http://orcid.org/0000-0003-2188-6958
                Article
                918
                10.1038/s41422-023-00918-9
                10837209
                38267638
                7896f519-632d-42e1-9fbc-8e98421120f7
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 26 February 2023
                : 15 December 2023
                Funding
                Funded by: FundRef https://doi.org/10.13039/100000069, U.S. Department of Health & Human Services | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS);
                Award ID: AR075735
                Award ID: AR070135
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/100000072, U.S. Department of Health & Human Services | NIH | National Institute of Dental and Craniofacial Research (NIDCR);
                Award ID: DE023813
                Award ID: DE028264
                Award Recipient :
                Funded by: U.S. Department of Health & Human Services | NIH | National Institute of Dental and Craniofacial Research (NIDCR)
                Funded by: FundRef https://doi.org/10.13039/501100001809, National Natural Science Foundation of China (National Science Foundation of China);
                Award ID: 81900806
                Award ID: 32070814
                Award Recipient :
                Funded by: U.S. Department of Health & Human Services | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
                Funded by: FundRef https://doi.org/10.13039/100000049, U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging);
                Award ID: AG056438
                Award Recipient :
                Categories
                Review Article
                Custom metadata
                © Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences 2024

                Cell biology
                cell biology,developmental biology
                Cell biology
                cell biology, developmental biology

                Comments

                Comment on this article