28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Novel molecular approach to define pest species status and tritrophic interactions from historical Bemisia specimens

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Museum specimens represent valuable genomic resources for understanding host-endosymbiont/parasitoid evolutionary relationships, resolving species complexes and nomenclatural problems. However, museum collections suffer DNA degradation, making them challenging for molecular-based studies. Here, the mitogenomes of a single 1912 Sri Lankan Bemisia emiliae cotype puparium, and of a 1942 Japanese Bemisia puparium are characterised using a Next-Generation Sequencing approach. Whiteflies are small sap-sucking insects including B. tabaci pest species complex. Bemisia emiliae’s draft mitogenome showed a high degree of homology with published B. tabaci mitogenomes, and exhibited 98–100% partial mitochondrial DNA Cytochrome Oxidase I (mtCOI) gene identity with the B. tabaci species known as Asia II-7. The partial mtCOI gene of the Japanese specimen shared 99% sequence identity with the Bemisia ‘JpL’ genetic group. Metagenomic analysis identified bacterial sequences in both Bemisia specimens, while hymenopteran sequences were also identified in the Japanese Bemisia puparium, including complete mtCOI and rRNA genes, and various partial mtDNA genes. At 88–90% mtCOI sequence identity to Aphelinidae wasps, we concluded that the 1942 Bemisia nymph was parasitized by an Eretmocerus parasitoid wasp. Our approach enables the characterisation of genomes and associated metagenomic communities of museum specimens using 1.5 ng gDNA, and to infer historical tritrophic relationships in Bemisia whiteflies.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Asymmetric mating interactions drive widespread invasion and displacement in a whitefly.

          The role of behavioral mechanisms in animal invasions is poorly understood. We show that asymmetric mating interactions between closely related but previously allopatric genetic groups of the whitefly Bemisia tabaci, a haplodiploid species, have been a driving force contributing to widespread invasion and displacement by alien populations. We conducted long-term field surveys, caged population experiments, and detailed behavioral observations in Zhejiang, China, and Queensland, Australia, to investigate the invasion process and its underlying behavioral mechanisms. During invasion and displacement, we found increased frequency of copulation leading to increased production of female progeny among the invader, as well as reduced copulation and female production in the indigenous genetic groups. Such asymmetric mating interactions may be critical to determining the capacity of a haplodiploid invader and the consequences for its closely related indigenous organisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Symbiont-mediated protection in insect hosts.

            Microbes influence the ecology and evolution of their hosts in a variety of ways, including the formation of life-long beneficial or detrimental parasitic infections. Understanding the molecular and biochemical events that underpin symbiosis - beneficial or parasitic - has been a long-term goal of molecular symbiosis research. In addition to beneficial symbionts provisioning scarce resources to their hosts, a growing body of evidence shows that bacterial symbionts can protect their hosts from parasitic symbionts and predators. Here, we review recent theoretical predictions and experimental observations of symbiont-mediated protection in insects. We discuss the implications that protection has for the ecology and evolution of host, symbiont and pathogen and describe what is known about the molecular mechanisms that underpin symbiont protection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences.

              Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a species complex that is one of the most devastating agricultural pests worldwide and affects a broad range of food, fiber and ornamental crops. Unfortunately, using parsimony and neighbor joining methods, global phylogenetic relationships of the major races/biotypes of B. tabaci remain unresolved. Aside from the limitations of these methods, phylogenetic analyses have been limited to only small subsets of the global collection of B. tabaci, and thus limited taxon sampling has confounded the analyses. To improve our understanding of global B. tabaci phylogenetic relationships, a Bayesian phylogenetic technique was utilized to elucidate the relationships among all COI DNA sequence data available in GenBank for B. tabaci worldwide (366 specimens). As a result, the first well-resolved phylogeny for the B. tabaci species complex was produced showing 12 major well-resolved (0.70 posterior probability or above) genetic groups: B. tabaci (Mediterranean/Asia Minor/Africa), B. tabaci (Mediterranean), B. tabaci (Indian Ocean), B. tabaci (sub-Saharan Africa silverleafing), B. tabaci (Asia I), B. tabaci (Australia), B. tabaci (China), B. tabaci (Asia II), B. tabaci (Italy), B. tabaci (New World), B. tabaci (sub-Saharan Africa non-silverleafing) and B. tabaci (Uganda sweet potato). Further analysis of this phylogeny shows a close relationship of the New World B. tabaci with Asian biotypes, and characteristics of the major sub-Saharan Africa non-silverleafing clade strongly supports an African origin of B. tabaci due to its position at the base of the global phylogeny, and the diversity of well-resolved sub-clades within this group. Bayesian re-analyses of B. tabaci ITS, COI, and a combined dataset from a previous study resulted in seven major well-resolved races with high posterior probabilities, also showing the utility of the Bayesian method. Relationships of the 12 major B. tabaci genetic groups are discussed herein.
                Bookmark

                Author and article information

                Contributors
                weetek.tay@csiro.au
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                27 March 2017
                27 March 2017
                2017
                : 7
                : 429
                Affiliations
                [1 ]GRID grid.1016.6, , CSIRO, Black Mountain Laboratories, ; Clunies Ross Street, Canberra, ACT 2601 Australia
                [2 ]ISNI 0000 0001 2172 097X, GRID grid.35937.3b, , Natural History Museum, ; London, UK
                [3 ]USDA APHIS NIS, BARC-West, Beltsville, Maryland United States of America
                [4 ]CSIRO, Brisbane, 4001 Queensland Australia
                Author information
                http://orcid.org/0000-0002-8451-0811
                Article
                528
                10.1038/s41598-017-00528-7
                5428565
                28348369
                788defda-8c76-4338-9f14-4475be9e67a4
                © The Author(s) 2017

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 6 September 2016
                : 1 March 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article