70
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice ( Oryza sativa L.)

      research-article
      , *
      Journal of Experimental Botany
      Oxford University Press
      Arabinogalactan protein, expression analysis, genome, rice

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Arabinogalactan proteins (AGPs) comprise a family of hydroxyproline-rich glycoproteins that are implicated in plant growth and development. In this study, 69 AGPs are identified from the rice genome, including 13 classical AGPs, 15 arabinogalactan (AG) peptides, three non-classical AGPs, three early nodulin-like AGPs (eNod-like AGPs), eight non-specific lipid transfer protein-like AGPs (nsLTP-like AGPs), and 27 fasciclin-like AGPs (FLAs). The results from expressed sequence tags, microarrays, and massively parallel signature sequencing tags are used to analyse the expression of AGP-encoding genes, which is confirmed by real-time PCR. The results reveal that several rice AGP-encoding genes are predominantly expressed in anthers and display differential expression patterns in response to abscisic acid, gibberellic acid, and abiotic stresses. Based on the results obtained from this analysis, an attempt has been made to link the protein structures and expression patterns of rice AGP-encoding genes to their functions. Taken together, the genome-wide identification and expression analysis of the rice AGP gene family might facilitate further functional studies of rice AGPs.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites.

          We have developed a new method for the identification of signal peptides and their cleavage sites based on neural networks trained on separate sets of prokaryotic and eukaryotic sequence. The method performs significantly better than previous prediction schemes and can easily be applied on genome-wide data sets. Discrimination between cleaved signal peptides and uncleaved N-terminal signal-anchor sequences is also possible, though with lower precision. Predictions can be made on a publicly available WWW server.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress.

            F-box proteins constitute a large family in eukaryotes and are characterized by a conserved F-box motif (approximately 40 amino acids). As components of the Skp1p-cullin-F-box complex, F-box proteins are critical for the controlled degradation of cellular proteins. We have identified 687 potential F-box proteins in rice (Oryza sativa), the model monocotyledonous plant, by a reiterative database search. Computational analysis revealed the presence of several other functional domains, including leucine-rich repeats, kelch repeats, F-box associated domain, domain of unknown function, and tubby domain in F-box proteins. Based upon their domain composition, they have been classified into 10 subfamilies. Several putative novel conserved motifs have been identified in F-box proteins, which do not contain any other known functional domain. An analysis of a complete set of F-box proteins in rice is presented, including classification, chromosomal location, conserved motifs, and phylogenetic relationship. It appears that the expansion of F-box family in rice, in large part, might have occurred due to localized gene duplications. Furthermore, comprehensive digital expression analysis of F-box protein-encoding genes has been complemented with microarray analysis. The results reveal specific and/or overlapping expression of rice F-box protein-encoding genes during floral transition as well as panicle and seed development. At least 43 F-box protein-encoding genes have been found to be differentially expressed in rice seedlings subjected to different abiotic stress conditions. The expression of several F-box protein-encoding genes is also influenced by light. The structure and function of F-box proteins in plants is discussed in light of these results and the published information. These data will be useful for prioritization of F-box proteins for functional validation in rice.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rice plant development: from zygote to spikelet.

              Rice is becoming a model plant in monocotyledons and a model cereal crop. For better understanding of the rice plant, it is essential to elucidate the developmental programs of the life cycle. To date, several attempts have been made in rice to categorize the developmental processes of some organs into substages. These studies are based exclusively on the morphological and anatomical viewpoints. Recent advancement in genetics and molecular biology has given us new aspects of developmental processes. In this review, we first describe the phasic development of the rice plant, and then describe in detail the developmental courses of major organs, leaf, root and spikelet, and specific organs/tissues. Also, for the facility of future studies, we propose a staging system for each organ.
                Bookmark

                Author and article information

                Journal
                J Exp Bot
                jexbot
                exbotj
                Journal of Experimental Botany
                Oxford University Press
                0022-0957
                1460-2431
                June 2010
                27 April 2010
                27 April 2010
                : 61
                : 10
                : 2647-2668
                Affiliations
                Key Laboratory of the Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
                Author notes
                [* ]To whom correspondence should be addressed. E-mail: jzhao@ 123456whu.edu.cn
                Article
                10.1093/jxb/erq104
                2882264
                20423940
                7849ad01-b4b4-4d6f-87c4-f1fe1c8c600b
                © 2010 The Author(s).

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details)

                History
                : 11 December 2009
                : 22 March 2010
                : 25 March 2010
                Categories
                Research Papers

                Plant science & Botany
                rice,genome,arabinogalactan protein,expression analysis
                Plant science & Botany
                rice, genome, arabinogalactan protein, expression analysis

                Comments

                Comment on this article