10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Deformations of the Boundary Theory of the Square Lattice AKLT Model

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The 1D AKLT model is a paradigm of antiferromagnetism, and its ground state exhibits symmetry-protected topological order. On a 2D lattice, the AKLT model has recently gained attention because it too displays symmetry-protected topological order, and its ground state can act as a resource state for measurement-based quantum computation if the model is gapped. While the 1D model has been shown to be gapped, it remains an open problem to prove the existence of a spectral gap on the 2D square lattice, which would guarantee the robustness of the resource state. Recently, it has been shown that one can deduce this spectral gap by analyzing the model's boundary theory via a tensor network representation of the ground state. In this work, we express the boundary state of the 2D AKLT model in terms of a classical loop model, where loops, vertices, and crossings are each given a weight. We use numerical techniques to sample configurations of loops and subsequently evaluate the boundary state and boundary Hamiltonian on a square lattice. As a result, we evidence a spectral gap in the square lattice AKLT model. In addition, by varying the weights of the loops, vertices, and crossings, we indicate the presence of three distinct phases exhibited by the classical loop model.

          Related collections

          Author and article information

          Journal
          21 December 2019
          Article
          1912.10327
          781bf652-0333-403c-842f-078aacb4a92e

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          quant-ph cond-mat.stat-mech cond-mat.str-el math-ph math.MP

          Mathematical physics,Condensed matter,Quantum physics & Field theory,Mathematical & Computational physics

          Comments

          Comment on this article