21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The absolute chronology and thermal processing of solids in the solar protoplanetary disk.

      Science (New York, N.Y.)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transient heating events that formed calcium-aluminum-rich inclusions (CAIs) and chondrules are fundamental processes in the evolution of the solar protoplanetary disk, but their chronology is not understood. Using U-corrected Pb-Pb dating, we determined absolute ages of individual CAIs and chondrules from primitive meteorites. CAIs define a brief formation interval corresponding to an age of 4567.30 ± 0.16 million years (My), whereas chondrule ages range from 4567.32 ± 0.42 to 4564.71 ± 0.30 My. These data refute the long-held view of an age gap between CAIs and chondrules and, instead, indicate that chondrule formation started contemporaneously with CAIs and lasted ~3 My. This time scale is similar to disk lifetimes inferred from astronomical observations, suggesting that the formation of CAIs and chondrules reflects a process intrinsically linked to the secular evolution of accretionary disks.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions.

          The lead-lead isochron age of chondrules in the CR chondrite Acfer 059 is 4564.7 +/- 0.6 million years ago (Ma), whereas the lead isotopic age of calcium-aluminum-rich inclusions (CAIs) in the CV chondrite Efremovka is 4567.2 +/- 0.6 Ma. This gives an interval of 2.5 +/- 1.2 million years (My) between formation of the CV CAIs and the CR chondrules and indicates that CAI- and chondrule-forming events lasted for at least 1.3 My. This time interval is consistent with a 2- to 3-My age difference between CR CAIs and chondrules inferred from the differences in their initial 26Al/27Al ratios and supports the chronological significance of the 26Al-26Mg systematics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Origin of Nucleosynthetic Isotope Heterogeneity in the Solar Protoplanetary Disk

            Stable-isotope variations exist among inner solar system solids, planets, and asteroids, but their importance is not understood. We report correlated, mass-independent variations of titanium-46 and titanium-50 in bulk analyses of these materials. Because titanium-46 and titanium-50 have different nucleosynthetic origins, this correlation suggests that the presolar dust inherited from the protosolar molecular cloud was well mixed when the oldest solar system solids formed, but requires a subsequent process imparting isotopic variability at the planetary scale. We infer that thermal processing of molecular cloud material, probably associated with volatile-element depletions in the inner solar system, resulted in selective destruction of thermally unstable, isotopically anomalous presolar components, producing residual isotopic heterogeneity. This implies that terrestrial planets accreted from thermally processed solids with nonsolar isotopic compositions.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Widespread54Cr Heterogeneity in the Inner Solar System

                Bookmark

                Author and article information

                Journal
                23118187
                10.1126/science.1226919

                Comments

                Comment on this article