5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long-range GABAergic projections contribute to cortical feedback control of sensory processing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the olfactory system, the olfactory cortex sends glutamatergic projections back to the first stage of olfactory processing, the olfactory bulb (OB). Such corticofugal excitatory circuits — a canonical circuit motif described in all sensory systems— dynamically adjust early sensory processing. Here, we uncover a corticofugal inhibitory feedback to OB, originating from a subpopulation of GABAergic neurons in the anterior olfactory cortex and innervating both local and output OB neurons. In vivo imaging and network modeling showed that optogenetic activation of cortical GABAergic projections drives a net subtractive inhibition of both spontaneous and odor-evoked activity in local as well as output neurons. In output neurons, stimulation of cortical GABAergic feedback enhances separation of population odor responses in tufted cells, but not mitral cells. Targeted pharmacogenetic silencing of cortical GABAergic axon terminals impaired discrimination of similar odor mixtures. Thus, corticofugal GABAergic projections represent an additional circuit motif in cortical feedback control of sensory processing.

          Abstract

          Classically, corticofugal feedback projections that adjust sensory processing are excitatory. Here, the authors uncover the presence of top-down inhibitory projections from cortical GABAergic neurons in the olfactory system, which directly inhibit olfactory bulb circuits.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects.

          We describe a model of visual processing in which feedback connections from a higher- to a lower-order visual cortical area carry predictions of lower-level neural activities, whereas the feedforward connections carry the residual errors between the predictions and the actual lower-level activities. When exposed to natural images, a hierarchical network of model neurons implementing such a model developed simple-cell-like receptive fields. A subset of neurons responsible for carrying the residual errors showed endstopping and other extra-classical receptive-field effects. These results suggest that rather than being exclusively feedforward phenomena, nonclassical surround effects in the visual cortex may also result from cortico-cortical feedback as a consequence of the visual system using an efficient hierarchical strategy for encoding natural images.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            How inhibition shapes cortical activity.

            Cortical processing reflects the interplay of synaptic excitation and synaptic inhibition. Rapidly accumulating evidence is highlighting the crucial role of inhibition in shaping spontaneous and sensory-evoked cortical activity and thus underscores how a better knowledge of inhibitory circuits is necessary for our understanding of cortical function. We discuss current views of how inhibition regulates the function of cortical neurons and point to a number of important open questions. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Natural neural projection dynamics underlying social behavior.

              Social interaction is a complex behavior essential for many species and is impaired in major neuropsychiatric disorders. Pharmacological studies have implicated certain neurotransmitter systems in social behavior, but circuit-level understanding of endogenous neural activity during social interaction is lacking. We therefore developed and applied a new methodology, termed fiber photometry, to optically record natural neural activity in genetically and connectivity-defined projections to elucidate the real-time role of specified pathways in mammalian behavior. Fiber photometry revealed that activity dynamics of a ventral tegmental area (VTA)-to-nucleus accumbens (NAc) projection could encode and predict key features of social, but not novel object, interaction. Consistent with this observation, optogenetic control of cells specifically contributing to this projection was sufficient to modulate social behavior, which was mediated by type 1 dopamine receptor signaling downstream in the NAc. Direct observation of deep projection-specific activity in this way captures a fundamental and previously inaccessible dimension of mammalian circuit dynamics. Copyright © 2014 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                camille.mazo@gmail.com
                pmlledo@pasteur.fr
                gabriel.lepousez@pasteur.fr
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                12 November 2022
                12 November 2022
                2022
                : 13
                : 6879
                Affiliations
                [1 ]Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Memory Unit, F-75015 Paris, France
                [2 ]GRID grid.421010.6, ISNI 0000 0004 0453 9636, Present Address: Champalimaud Foundation, ; Lisbon, Portugal
                Author information
                http://orcid.org/0000-0003-2497-1779
                http://orcid.org/0000-0002-2152-3674
                http://orcid.org/0000-0001-7567-1499
                http://orcid.org/0000-0002-8156-7003
                http://orcid.org/0000-0002-9390-7749
                Article
                34513
                10.1038/s41467-022-34513-0
                9653434
                36371430
                77fac787-fc5d-403a-ba18-98f761d9fc7e
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 6 July 2022
                : 25 October 2022
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001665, Agence Nationale de la Recherche (French National Research Agency);
                Award ID: ANR-15-CE37-0004
                Award ID: ANR-16-CE37-0010
                Award ID: ANR-15-NEUC-0004
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/501100002915, Fondation pour la Recherche Médicale (Foundation for Medical Research in France);
                Award ID: FDT20160435483
                Award Recipient :
                Funded by: Life insurance company “AG2R-La-Mondiale” Laboratoire d’Excellence Revive (Investissement d’Avenir, ANR-10-LABX-73)
                Categories
                Article
                Custom metadata
                © The Author(s) 2022

                Uncategorized
                olfactory bulb,sensory processing,neural circuits
                Uncategorized
                olfactory bulb, sensory processing, neural circuits

                Comments

                Comment on this article