Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Predicting Energy Consumption Using LSTM, Multi-Layer GRU and Drop-GRU Neural Networks

      , , ,
      Sensors
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With the steep rise in the development of smart grids and the current advancement in developing measuring infrastructure, short term power consumption forecasting has recently gained increasing attention. In fact, the prediction of future power loads turns out to be a key issue to avoid energy wastage and to build effective power management strategies. Furthermore, energy consumption information can be considered historical time series data that are required to extract all meaningful knowledge and then forecast the future consumption. In this work, we aim to model and to compare three different machine learning algorithms in making a time series power forecast. The proposed models are the Long Short-Term Memory (LSTM), the Gated Recurrent Unit (GRU) and the Drop-GRU. We are going to use the power consumption data as our time series dataset and make predictions accordingly. The LSTM neural network has been favored in this work to predict the future load consumption and prevent consumption peaks. To provide a comprehensive evaluation of this method, we have performed several experiments using real data power consumption in some French cities. Experimental results on various time horizons show that the LSTM model produces a better result than the GRU and the Drop-GRU forecasting methods. There are fewer prediction errors and its precision is finer. Therefore, these predictions based on the LSTM method will allow us to make decisions in advance and trigger load shedding in cases where consumption exceeds the authorized threshold. This will have a significant impact on planning the power quality and the maintenance of power equipment.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Influence of Data Splitting on Performance of Machine Learning Models in Prediction of Shear Strength of Soil

          The main objective of this study is to evaluate and compare the performance of different machine learning (ML) algorithms, namely, Artificial Neural Network (ANN), Extreme Learning Machine (ELM), and Boosting Trees (Boosted) algorithms, considering the influence of various training to testing ratios in predicting the soil shear strength, one of the most critical geotechnical engineering properties in civil engineering design and construction. For this aim, a database of 538 soil samples collected from the Long Phu 1 power plant project, Vietnam, was utilized to generate the datasets for the modeling process. Different ratios (i.e., 10/90, 20/80, 30/70, 40/60, 50/50, 60/40, 70/30, 80/20, and 90/10) were used to divide the datasets into the training and testing datasets for the performance assessment of models. Popular statistical indicators, such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Correlation Coefficient (R), were employed to evaluate the predictive capability of the models under different training and testing ratios. Besides, Monte Carlo simulation was simultaneously carried out to evaluate the performance of the proposed models, taking into account the random sampling effect. The results showed that although all three ML models performed well, the ANN was the most accurate and statistically stable model after 1000 Monte Carlo simulations (Mean R = 0.9348) compared with other models such as Boosted (Mean R = 0.9192) and ELM (Mean R = 0.8703). Investigation on the performance of the models showed that the predictive capability of the ML models was greatly affected by the training/testing ratios, where the 70/30 one presented the best performance of the models. Concisely, the results presented herein showed an effective manner in selecting the appropriate ratios of datasets and the best ML model to predict the soil shear strength accurately, which would be helpful in the design and engineering phases of construction projects.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Photovoltaic power forecasting based LSTM-Convolutional Network

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Time series analysis and long short-term memory neural network to predict landslide displacement

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                SENSC9
                Sensors
                Sensors
                MDPI AG
                1424-8220
                June 2022
                May 27 2022
                : 22
                : 11
                : 4062
                Article
                10.3390/s22114062
                35684681
                77f72a7f-4957-4179-9ec5-96fec52a4098
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content338

                Cited by14

                Most referenced authors141