Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Roles of the Cerebellum in Motor Preparation and Prediction of Timing

      , , , , , ,
      Neuroscience
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references144

          • Record: found
          • Abstract: found
          • Article: not found

          An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance.

          Historically, the locus coeruleus-norepinephrine (LC-NE) system has been implicated in arousal, but recent findings suggest that this system plays a more complex and specific role in the control of behavior than investigators previously thought. We review neurophysiological and modeling studies in monkey that support a new theory of LC-NE function. LC neurons exhibit two modes of activity, phasic and tonic. Phasic LC activation is driven by the outcome of task-related decision processes and is proposed to facilitate ensuing behaviors and to help optimize task performance (exploitation). When utility in the task wanes, LC neurons exhibit a tonic activity mode, associated with disengagement from the current task and a search for alternative behaviors (exploration). Monkey LC receives prominent, direct inputs from the anterior cingulate (ACC) and orbitofrontal cortices (OFC), both of which are thought to monitor task-related utility. We propose that these frontal areas produce the above patterns of LC activity to optimize utility on both short and long timescales.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            What makes us tick? Functional and neural mechanisms of interval timing.

            Time is a fundamental dimension of life. It is crucial for decisions about quantity, speed of movement and rate of return, as well as for motor control in walking, speech, playing or appreciating music, and participating in sports. Traditionally, the way in which time is perceived, represented and estimated has been explained using a pacemaker-accumulator model that is not only straightforward, but also surprisingly powerful in explaining behavioural and biological data. However, recent advances have challenged this traditional view. It is now proposed that the brain represents time in a distributed manner and tells the time by detecting the coincidental activation of different neural populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Control of mental activities by internal models in the cerebellum.

              Masao ITO (2008)
              The intricate neuronal circuitry of the cerebellum is thought to encode internal models that reproduce the dynamic properties of body parts. These models are essential for controlling the movement of these body parts: they allow the brain to precisely control the movement without the need for sensory feedback. It is thought that the cerebellum might also encode internal models that reproduce the essential properties of mental representations in the cerebral cortex. This hypothesis suggests a possible mechanism by which intuition and implicit thought might function and explains some of the symptoms that are exhibited by psychiatric patients. This article examines the conceptual bases and experimental evidence for this hypothesis.
                Bookmark

                Author and article information

                Journal
                Neuroscience
                Neuroscience
                Elsevier BV
                03064522
                May 2021
                May 2021
                : 462
                : 220-234
                Article
                10.1016/j.neuroscience.2020.04.039
                32360700
                77e97c1b-116d-4642-96f2-86df0705361b
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content3,858

                Cited by14

                Most referenced authors849