111
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Natural control methods based on surface electromyography (sEMG) and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications, and commercial prostheses are capable of offering natural control for only a few movements. In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its methods for natural control of robotic hands via sEMG using a large number of intact subjects and amputees. We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 transradial amputees. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets. The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods, but lower than the results obtained with the best reference methods in our tests. The results show that convolutional neural networks with a very simple architecture can produce accurate results comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters) can be fundamental for the analysis of sEMG data. Larger networks can achieve higher accuracy on computer vision and object recognition tasks. This fact suggests that it may be interesting to evaluate if larger networks can increase sEMG classification accuracy too.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          A robust, real-time control scheme for multifunction myoelectric control.

          This paper represents an ongoing investigation of dexterous and natural control of upper extremity prostheses using the myoelectric signal (MES). The scheme described within uses pattern recognition to process four channels of MES, with the task of discriminating multiple classes of limb movement. The method does not require segmentation of the MES data, allowing a continuous stream of class decisions to be delivered to a prosthetic device. It is shown in this paper that, by exploiting the processing power inherent in current computing systems, substantial gains in classifier accuracy and response time are possible. Other important characteristics for prosthetic control systems are met as well. Due to the fact that the classifier learns the muscle activation patterns for each desired class for each individual, a natural control actuation results. The continuous decision stream allows complex sequences of manipulation involving multiple joints to be performed without interruption. Finally, minimal storage capacity is required, which is an important factor in embedded control systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms.

            Improving the function of prosthetic arms remains a challenge, because access to the neural-control information for the arm is lost during amputation. A surgical technique called targeted muscle reinnervation (TMR) transfers residual arm nerves to alternative muscle sites. After reinnervation, these target muscles produce electromyogram (EMG) signals on the surface of the skin that can be measured and used to control prosthetic arms. To assess the performance of patients with upper-limb amputation who had undergone TMR surgery, using a pattern-recognition algorithm to decode EMG signals and control prosthetic-arm motions. Study conducted between January 2007 and January 2008 at the Rehabilitation Institute of Chicago among 5 patients with shoulder-disarticulation or transhumeral amputations who underwent TMR surgery between February 2002 and October 2006 and 5 control participants without amputation. Surface EMG signals were recorded from all participants and decoded using a pattern-recognition algorithm. The decoding program controlled the movement of a virtual prosthetic arm. All participants were instructed to perform various arm movements, and their abilities to control the virtual prosthetic arm were measured. In addition, TMR patients used the same control system to operate advanced arm prosthesis prototypes. Performance metrics measured during virtual arm movements included motion selection time, motion completion time, and motion completion ("success") rate. The TMR patients were able to repeatedly perform 10 different elbow, wrist, and hand motions with the virtual prosthetic arm. For these patients, the mean motion selection and motion completion times for elbow and wrist movements were 0.22 seconds (SD, 0.06) and 1.29 seconds (SD, 0.15), respectively. These times were 0.06 seconds and 0.21 seconds longer than the mean times for control participants. For TMR patients, the mean motion selection and motion completion times for hand-grasp patterns were 0.38 seconds (SD, 0.12) and 1.54 seconds (SD, 0.27), respectively. These patients successfully completed a mean of 96.3% (SD, 3.8) of elbow and wrist movements and 86.9% (SD, 13.9) of hand movements within 5 seconds, compared with 100% (SD, 0) and 96.7% (SD, 4.7) completed by controls. Three of the patients were able to demonstrate the use of this control system in advanced prostheses, including motorized shoulders, elbows, wrists, and hands. These results suggest that reinnervated muscles can produce sufficient EMG information for real-time control of advanced artificial arms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multi-column deep neural network for traffic sign classification.

              We describe the approach that won the final phase of the German traffic sign recognition benchmark. Our method is the only one that achieved a better-than-human recognition rate of 99.46%. We use a fast, fully parameterizable GPU implementation of a Deep Neural Network (DNN) that does not require careful design of pre-wired feature extractors, which are rather learned in a supervised way. Combining various DNNs trained on differently preprocessed data into a Multi-Column DNN (MCDNN) further boosts recognition performance, making the system insensitive also to variations in contrast and illumination.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurorobot
                Front Neurorobot
                Front. Neurorobot.
                Frontiers in Neurorobotics
                Frontiers Media S.A.
                1662-5218
                07 September 2016
                2016
                : 10
                : 9
                Affiliations
                [1]Information Systems Institute, HES-SO Valais-Wallis, University of Applied Sciences Western Switzerland Sierre, Switzerland
                Author notes

                Edited by: Michael Wininger, University of Hartford, USA

                Reviewed by: Leslie Samuel Smith, University of Stirling, UK; Ashley Kleinhans, University of Johannesburg, South Africa

                *Correspondence: Manfredo Atzori manfredo.atzori@ 123456hevs.ch
                Article
                10.3389/fnbot.2016.00009
                5013051
                27656140
                77e8bc61-1d83-44b5-80a3-cf205e3dbf9b
                Copyright © 2016 Atzori, Cognolato and Müller.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 July 2016
                : 22 August 2016
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 65, Pages: 10, Words: 7571
                Funding
                Funded by: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung 10.13039/501100001711
                Award ID: #132700
                Award ID: #160837
                Categories
                Neuroscience
                Original Research

                Robotics
                electromyography,prosthetics,rehabilitation robotics,machine learning,deep learning,convolutional neural networks

                Comments

                Comment on this article