25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Specificity of Hemodynamic Brain Responses to Painful Stimuli: A functional near-infrared spectroscopy study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Assessing pain in individuals not able to communicate (e.g. infants, under surgery, or following stroke) is difficult due to the lack of non-verbal objective measures of pain. Near-infrared spectroscopy (NIRS) being a portable, non-invasive and inexpensive method of monitoring cerebral hemodynamic activity has the potential to provide such a measure. Here we used functional NIRS to evaluate brain activation to an innocuous and a noxious electrical stimulus on healthy human subjects (n = 11). For both innocuous and noxious stimuli, we observed a signal change in the primary somatosensory cortex contralateral to the stimulus. The painful and non-painful stimuli can be differentiated based on their signal size and profile. We also observed that repetitive noxious stimuli resulted in adaptation of the signal. Furthermore, the signal was distinguishable from a skin sympathetic response to pain that tended to mask it. Our results support the notion that functional NIRS has a potential utility as an objective measure of pain.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology.

          This year marks the 20th anniversary of functional near-infrared spectroscopy and imaging (fNIRS/fNIRI). As the vast majority of commercial instruments developed until now are based on continuous wave technology, the aim of this publication is to review the current state of instrumentation and methodology of continuous wave fNIRI. For this purpose we provide an overview of the commercially available instruments and address instrumental aspects such as light sources, detectors and sensor arrangements. Methodological aspects, algorithms to calculate the concentrations of oxy- and deoxyhemoglobin and approaches for data analysis are also reviewed. From the single-location measurements of the early years, instrumentation has progressed to imaging initially in two dimensions (topography) and then three (tomography). The methods of analysis have also changed tremendously, from the simple modified Beer-Lambert law to sophisticated image reconstruction and data analysis methods used today. Due to these advances, fNIRI has become a modality that is widely used in neuroscience research and several manufacturers provide commercial instrumentation. It seems likely that fNIRI will become a clinical tool in the foreseeable future, which will enable diagnosis in single subjects. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain.

            Near-infrared spectroscopy (NIRS) is a noninvasive neuroimaging tool for studying evoked hemodynamic changes within the brain. By this technique, changes in the optical absorption of light are recorded over time and are used to estimate the functionally evoked changes in cerebral oxyhemoglobin and deoxyhemoglobin concentrations that result from local cerebral vascular and oxygen metabolic effects during brain activity. Over the past three decades this technology has continued to grow, and today NIRS studies have found many niche applications in the fields of psychology, physiology, and cerebral pathology. The growing popularity of this technique is in part associated with a lower cost and increased portability of NIRS equipment when compared with other imaging modalities, such as functional magnetic resonance imaging and positron emission tomography. With this increasing number of applications, new techniques for the processing, analysis, and interpretation of NIRS data are continually being developed. We review some of the time-series and functional analysis techniques that are currently used in NIRS studies, we describe the practical implementation of various signal processing techniques for removing physiological, instrumental, and motion-artifact noise from optical data, and we discuss the unique aspects of NIRS analysis in comparison with other brain imaging modalities. These methods are described within the context of the MATLAB-based graphical user interface program, HomER, which we have developed and distributed to facilitate the processing of optical functional brain data.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional imaging of brain responses to pain. A review and meta-analysis (2000).

              Brain responses to pain, assessed through positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) are reviewed. Functional activation of brain regions are thought to be reflected by increases in the regional cerebral blood flow (rCBF) in PET studies, and in the blood oxygen level dependent (BOLD) signal in fMRI. rCBF increases to noxious stimuli are almost constantly observed in second somatic (SII) and insular regions, and in the anterior cingulate cortex (ACC), and with slightly less consistency in the contralateral thalamus and the primary somatic area (SI). Activation of the lateral thalamus, SI, SII and insula are thought to be related to the sensory-discriminative aspects of pain processing. SI is activated in roughly half of the studies, and the probability of obtaining SI activation appears related to the total amount of body surface stimulated (spatial summation) and probably also by temporal summation and attention to the stimulus. In a number of studies, the thalamic response was bilateral, probably reflecting generalised arousal in reaction to pain. ACC does not seem to be involved in coding stimulus intensity or location but appears to participate in both the affective and attentional concomitants of pain sensation, as well as in response selection. ACC subdivisions activated by painful stimuli partially overlap those activated in orienting and target detection tasks, but are distinct from those activated in tests involving sustained attention (Stroop, etc.). In addition to ACC, increased blood flow in the posterior parietal and prefrontal cortices is thought to reflect attentional and memory networks activated by noxious stimulation. Less noted but frequent activation concerns motor-related areas such as the striatum, cerebellum and supplementary motor area, as well as regions involved in pain control such as the periaqueductal grey. In patients, chronic spontaneous pain is associated with decreased resting rCBF in contralateral thalamus, which may be reverted by analgesic procedures. Abnormal pain evoked by innocuous stimuli (allodynia) has been associated with amplification of the thalamic, insular and SII responses, concomitant to a paradoxical CBF decrease in ACC. It is argued that imaging studies of allodynia should be encouraged in order to understand central reorganisations leading to abnormal cortical pain processing. A number of brain areas activated by acute pain, particularly the thalamus and anterior cingulate, also show increases in rCBF during analgesic procedures. Taken together, these data suggest that hemodynamic responses to pain reflect simultaneously the sensory, cognitive and affective dimensions of pain, and that the same structure may both respond to pain and participate in pain control. The precise biochemical nature of these mechanisms remains to be investigated.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                30 March 2015
                2015
                : 5
                : 9469
                Affiliations
                [1 ]MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School , Charlestown, MA, USA
                [2 ]Center for Pain and the Brain, Departments of Anaesthesia and Radiology, Boston Children's Hospital , Boston, MA
                [3 ]Departments of Psychiatry and Radiology, MGH
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep09469
                10.1038/srep09469
                4377554
                25820289
                77d3528d-27a3-4152-a4be-23ae014bade2
                Copyright © 2015, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 22 September 2014
                : 04 March 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article