33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      GxcDD, a putative RacGEF, is involved in Dictyostelium development

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Rho subfamily GTPases are implicated in a large number of actin-related processes. They shuttle from an inactive GDP-bound form to an active GTP-bound form. This reaction is catalysed by Guanine nucleotide exchange factor (GEFs). GTPase activating proteins (GAPs) help the GTPase return to the inactive GDP-bound form. The social amoeba Dictyostelium discoideum lacks a Rho or Cdc42 ortholog but has several Rac related GTPases. Compared to our understanding of the downstream effects of Racs our understanding of upstream mechanisms that activate Rac GTPases is relatively poor.

          Results

          We report on GxcDD ( Guanine e xchange factor for Ra c GTPases), a Dictyostelium RacGEF. GxcDD is a 180-kDa multidomain protein containing a type 3 CH domain, two IQ motifs, three PH domains, a RhoGEF domain and an ArfGAP domain. Inactivation of the gene results in defective streaming during development under different conditions and a delay in developmental timing. The characterization of single domains revealed that the CH domain of GxcDD functions as a membrane association domain, the RhoGEF domain can physically interact with a subset of Rac GTPases, and the ArfGAP-PH tandem accumulates in cortical regions of the cell and on phagosomes. Our results also suggest that a conformational change may be required for activation of GxcDD, which would be important for its downstream signaling.

          Conclusion

          The data indicate that GxcDD is involved in proper streaming and development. We propose that GxcDD is not only a component of the Rac signaling pathway in Dictyostelium, but is also involved in integrating different signals. We provide evidence for a Calponin Homology domain acting as a membrane association domain. GxcDD can bind to several Rac GTPases, but its function as a nucleotide exchange factor needs to be studied further.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          The genome of the social amoeba Dictyostelium discoideum.

          The social amoebae are exceptional in their ability to alternate between unicellular and multicellular forms. Here we describe the genome of the best-studied member of this group, Dictyostelium discoideum. The gene-dense chromosomes of this organism encode approximately 12,500 predicted proteins, a high proportion of which have long, repetitive amino acid tracts. There are many genes for polyketide synthases and ABC transporters, suggesting an extensive secondary metabolism for producing and exporting small molecules. The genome is rich in complex repeats, one class of which is clustered and may serve as centromeres. Partial copies of the extrachromosomal ribosomal DNA (rDNA) element are found at the ends of each chromosome, suggesting a novel telomere structure and the use of a common mechanism to maintain both the rDNA and chromosomal termini. A proteome-based phylogeny shows that the amoebozoa diverged from the animal-fungal lineage after the plant-animal split, but Dictyostelium seems to have retained more of the diversity of the ancestral genome than have plants, animals or fungi.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ILK, PINCH and parvin: the tIPP of integrin signalling.

            The ternary complex of integrin-linked kinase (ILK), PINCH and parvin functions as a signalling platform for integrins by interfacing with the actin cytoskeleton and many diverse signalling pathways. All these proteins have synergistic functions at focal adhesions, but recent work has indicated that these proteins might also have separate roles within a cell. They function as regulators of gene transcription or cell-cell adhesion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of an evolutionarily conserved superfamily of DOCK180-related proteins with guanine nucleotide exchange activity.

              Mammalian DOCK180 protein and its orthologues Myoblast City (MBC) and CED-5 in Drosophila and Caenorhabditis elegans, respectively, function as critical regulators of the small GTPase Rac during several fundamentally important biological processes, such as cell motility and phagocytosis. The mechanism by which DOCK180 and its orthologues regulate Rac has remained elusive. We report here the identification of a domain within DOCK180 named DHR-2 (Dock Homology Region-2) that specifically binds to nucleotide-free Rac and activates Rac in vitro. Our studies further demonstrate that the DHR-2 domain is both necessary and sufficient for DOCK180-mediated Rac activation in vivo. Importantly, we have identified several novel homologues of DOCK180 that possess this domain and found that many of them directly bind to and exchange GDP for GTP both in vitro and in vivo on either Rac or another Rho-family member, Cdc42. Our studies therefore identify a novel protein domain that interacts with and activates GTPases and suggest the presence of an evolutionarily conserved DOCK180-related superfamily of exchange factors.
                Bookmark

                Author and article information

                Journal
                BMC Cell Biol
                BMC Cell Biology
                BioMed Central (London )
                1471-2121
                2007
                20 June 2007
                : 8
                : 23
                Affiliations
                [1 ]Institute for Biochemistry I, Medical Faculty, and Center for Molecular Medicine, University of Cologne, 50931, Cologne, Germany
                [2 ]National Research Council, Institute for Biological Sciences, 100 Sussex Drive, Ottawa ON, Canada
                Article
                1471-2121-8-23
                10.1186/1471-2121-8-23
                1914345
                17584488
                77d2e8a6-cd8d-4bdc-8e3a-85ca131c65c5
                Copyright © 2007 Mondal et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 18 December 2006
                : 20 June 2007
                Categories
                Research Article

                Cell biology
                Cell biology

                Comments

                Comment on this article