6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      1D CNN-Based Intracranial Aneurysms Detection in 3D TOF-MRA

      1 , 1 , 1 , 1 , 1 , 2 , 3
      Complexity
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          How to automatically detect intracranial aneurysms from Three-Dimension Time of Flight Magnetic Resonance Angiography (3D TOF MRA) images is a typical 3D image classification problem. Currently, the commonly used method is the Maximum Intensity Projection- (MIP-) based way. It transfers 3D classification into 2D case by projecting the 3D patch into 2D planes along different directions on the basis of voxel’s intensity. After then, the 2D Convolutional Neural Network (CNN) is established to do classification. It has been shown that the MIP-based method can reduce the demands for the samples and increase the computation efficiency. Meanwhile, the accuracy is comparable with that of 3D image classification. Inspired by the strategy of MIP, we want to further reduce the demands for samples and accelerate the training by transferring the 2D image classification into 1D case, i.e., we want to generate the 1D vectors from the MIP images and then establish a 1D CNN to do intracranial aneurysm detection and classification for 3D TOF MRA image. Specifically, our method first extracts a series of patches as the Region of Interests (ROIs) along the blood vessels from the original 3D TOF MRA 3D image. The corresponding MIP images of each ROI will be obtained through maximum intensity projecting. Then, we generate a series of 1D vectors by accumulating each MIP image along different directions. Meanwhile, a 1D CNN is established to detect aneurysms, in which, the input is the obtained 1D vectors and the output is the binary classification result denoting whether there are intracranial aneurysms in the considered patch. Generally, compared with 2D- and 3D-CNN, the 1D CNN-based way greatly accelerates the training and shows stronger robustness in the case of fewer samples. The efficiency of the proposed method outperforms the 2D CNN about 10 times in CPU training. Yet, their accuracies are close.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: not found
          • Article: not found

          ImageNet classification with deep convolutional neural networks

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A Threshold Selection Method from Gray-Level Histograms

              Bookmark
              • Record: found
              • Abstract: not found
              • Conference Proceedings: not found

              Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

                Bookmark

                Author and article information

                Contributors
                Journal
                Complexity
                Complexity
                Hindawi Limited
                1099-0526
                1076-2787
                November 12 2020
                November 12 2020
                : 2020
                : 1-13
                Affiliations
                [1 ]College of Life Science and Technology, Guangzhou, China
                [2 ]Department of Radiology, Union Hospital, Alberton, South Africa
                [3 ]School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430022, China
                Article
                10.1155/2020/7023754
                7779a1ac-937e-475f-8079-733325a10b1a
                © 2020

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article