10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Combined checkpoint blockade (e.g., PD1/PD-L1) with traditional clinical therapies can be hampered by side effects and low tumour-therapeutic outcome, hindering broad clinical translation. Here we report a combined tumour-therapeutic modality based on integrating nanosonosensitizers-augmented noninvasive sonodynamic therapy (SDT) with checkpoint-blockade immunotherapy. All components of the nanosonosensitizers (HMME/R837@Lip) are clinically approved, wherein liposomes act as carriers to co-encapsulate sonosensitizers (hematoporphyrin monomethyl ether (HMME)) and immune adjuvant (imiquimod (R837)). Using multiple tumour models, we demonstrate that combining nanosonosensitizers-augmented SDT with anti-PD-L1 induces an anti-tumour response, which not only arrests primary tumour progression, but also prevents lung metastasis. Furthermore, the combined treatment strategy offers a long-term immunological memory function, which can protect against tumour rechallenge after elimination of the initial tumours. Therefore, this work represents a proof-of-concept combinatorial tumour therapeutics based on noninvasive tumours-therapeutic modality with immunotherapy.

          Abstract

          Immunotherapy for the treatment of cancer can be complicated by side effects and poor efficacy. Here, the authors use a nanoparticle-based approach in combination with a TLR7 agonist and sonodynamic therapy, and find that when used together with anti-PD-L1, tumour formation and metastases are impacted.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells.

          Normal intestinal mucosa contains abundant immunoglobulin A (IgA)-secreting cells, which are generated from B cells in gut-associated lymphoid tissues (GALT). We show that dendritic cells (DC) from GALT induce T cell-independent expression of IgA and gut-homing receptors on B cells. GALT-DC-derived retinoic acid (RA) alone conferred gut tropism but could not promote IgA secretion. However, RA potently synergized with GALT-DC-derived interleukin-6 (IL-6) or IL-5 to induce IgA secretion. Consequently, mice deficient in the RA precursor vitamin A lacked IgA-secreting cells in the small intestine. Thus, GALT-DC shape mucosal immunity by modulating B cell migration and effector activity through synergistically acting mediators.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy

            Advanced colorectal cancer is one of the deadliest cancers, with a 5-year survival rate of only 12% for patients with the metastatic disease. Checkpoint inhibitors, such as the antibodies inhibiting the PD-1/PD-L1 axis, are among the most promising immunotherapies for patients with advanced colon cancer, but their durable response rate remains low. We herein report the use of immunogenic nanoparticles to augment the antitumour efficacy of PD-L1 antibody-mediated cancer immunotherapy. Nanoscale coordination polymer (NCP) core-shell nanoparticles carry oxaliplatin in the core and the photosensitizer pyropheophorbide-lipid conjugate (pyrolipid) in the shell (NCP@pyrolipid) for effective chemotherapy and photodynamic therapy (PDT). Synergy between oxaliplatin and pyrolipid-induced PDT kills tumour cells and provokes an immune response, resulting in calreticulin exposure on the cell surface, antitumour vaccination and an abscopal effect. When combined with anti-PD-L1 therapy, NCP@pyrolipid mediates regression of both light-irradiated primary tumours and non-irradiated distant tumours by inducing a strong tumour-specific immune response.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Near-Infrared-Triggered Photodynamic Therapy with Multitasking Upconversion Nanoparticles in Combination with Checkpoint Blockade for Immunotherapy of Colorectal Cancer.

              While immunotherapy has become a highly promising paradigm for cancer treatment in recent years, it has long been recognized that photodynamic therapy (PDT) has the ability to trigger antitumor immune responses. However, conventional PDT triggered by visible light has limited penetration depth, and its generated immune responses may not be robust enough to eliminate tumors. Herein, upconversion nanoparticles (UCNPs) are simultaneously loaded with chlorin e6 (Ce6), a photosensitizer, and imiquimod (R837), a Toll-like-receptor-7 agonist. The obtained multitasking UCNP-Ce6-R837 nanoparticles under near-infrared (NIR) irradiation with enhanced tissue penetration depth would enable effective photodynamic destruction of tumors to generate a pool of tumor-associated antigens, which in the presence of those R837-containing nanoparticles as the adjuvant are able to promote strong antitumor immune responses. More significantly, PDT with UCNP-Ce6-R837 in combination with the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) checkpoint blockade not only shows excellent efficacy in eliminating tumors exposed to the NIR laser but also results in strong antitumor immunities to inhibit the growth of distant tumors left behind after PDT treatment. Furthermore, such a cancer immunotherapy strategy has a long-term immune memory function to protect treated mice from tumor cell rechallenge. This work presents an immune-stimulating UCNP-based PDT strategy in combination with CTLA-4 checkpoint blockade to effectively destroy primary tumors under light exposure, inhibit distant tumors that can hardly be reached by light, and prevent tumor reoccurrence via the immune memory effect.
                Bookmark

                Author and article information

                Contributors
                zhang1986kun@126.com
                xuhuixiong@126.com
                chenyu@mail.sic.ac.cn
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                2 May 2019
                2 May 2019
                2019
                : 10
                : 2025
                Affiliations
                [1 ]ISNI 0000000123704535, GRID grid.24516.34, Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Ultrasound Research and Education Institute, , Tongji University School of Medicine, ; Shanghai, 200072 P. R. China
                [2 ]ISNI 0000 0001 1957 6294, GRID grid.454856.e, State Key Laboratory of High Performance Ceramics and Superfine Microstructure, , Shanghai Institute of Ceramics, Chinese Academy of Sciences, ; Shanghai, 200050 P. R. China
                [3 ]ISNI 0000000123704535, GRID grid.24516.34, Department of Gastroenterology, Shanghai Tenth People’s Hospital, , Tongji University School of Medicine, ; Shanghai, 200072 P. R. China
                Author information
                http://orcid.org/0000-0002-6971-1164
                http://orcid.org/0000-0002-8206-3325
                Article
                9760
                10.1038/s41467-019-09760-3
                6497709
                31048681
                77696876-ed95-4211-bd78-dd201bfcc8bc
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 12 September 2018
                : 28 February 2019
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                cancer immunotherapy,biomedical materials,nanotechnology in cancer
                Uncategorized
                cancer immunotherapy, biomedical materials, nanotechnology in cancer

                Comments

                Comment on this article