22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of a novel KCNQ1 mutation for type 1 long QT syndrome and assessment of the therapeutic potential of a novel IKs activator using patient-specific induced pluripotent stem cell-derived cardiomyocytes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Type 1 long QT syndrome (LQT1) is a common type of cardiac channelopathy associated with loss-of-function mutations of KCNQ1. Currently there is a lack of drugs that target the defected slowly activating delayed rectifier potassium channel (IKs) . With LQT1 patient-specific human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSC-CMs), we tested the effects of a selective IKs activator ML277 on reversing the disease phenotypes.

          Methods

          A LQT1 family with a novel heterozygous exon 7 deletion in the KCNQ1 gene was identified. Dermal fibroblasts from the proband and her healthy father were reprogrammed to hiPSCs and subsequently differentiated into hiPSC-CMs.

          Results

          Compared with the control, LQT1 patient hiPSC-CMs showed reduced levels of wild type KCNQ1 mRNA accompanied by multiple exon skipping mRNAs and a ~50% reduction of the full length Kv7.1 protein. Patient hiPSC-CMs showed reduced IKs current (tail current density at 30 mV: 0.33 ± 0.02 vs. 0.92 ± 0.21, P < 0.05) and prolonged action potential duration (APD) (APD 50 and APD90: 603.9 ± 39.2 vs. 319.3 ± 13.8 ms, P < 0.005; and 671.0 ± 41.1 vs. 372.9 ± 14.2 ms, P < 0.005). ML277, a small molecule recently identified to selectively activate K V7.1, reversed the decreased IKs and partially restored APDs in patient hiPSC-CMs.

          Conclusions

          From a LQT1 patient carrying a novel heterozygous exon7 deletion mutation of KCNQ1, we generated hiPSC-CMs that faithfully recapitulated the LQT1 phenotypes that are likely associated with haploinsufficiency and trafficking defect of KCNQ1/Kv7.1. The small molecule ML277 restored IKs function in hiPSC-CMs and could have therapeutic value for LQT1 patients.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s13287-015-0027-z) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Using iPS cells to investigate cardiac phenotypes in patients with Timothy Syndrome

          Individuals with congenital or acquired prolongation of the QT interval, or long QT syndrome (LQTS), are at risk of life threatening ventricular arrhythmia 1, 2. LQTS is commonly genetic in origin but can also be caused or exacerbated by environmental factors1, 3. A missense mutation in the L-type calcium channel CaV1.2 leads to LQTS in patients with Timothy syndrome (TS)4, 5. To explore the effect of the TS mutation on the electrical activity and contraction of human cardiomyocytes (CMs), we reprogrammed human skin cells from TS patients to generate induced pluripotent stem cells (iPSCs), and differentiated these cells into CMs. Electrophysiological recording and calcium (Ca2+) imaging studies of these cells revealed irregular contraction, excess Ca2+ influx, prolonged action potentials, irregular electrical activity and abnormal calcium transients in ventricular-like cells. We found that roscovitine (Ros), a compound that increases the voltage-dependent inactivation (VDI) of CaV1.26–8, restored the electrical and Ca2+ signaling properties of CMs from TS patients. This study opens new avenues for studying the molecular and cellular mechanisms of cardiac arrhythmias in humans, and provides a robust assay for developing new drugs to treat these diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2.

            Long-QT Syndrome (LQTS) is a cardiovascular disorder characterized by prolongation of the QT interval on ECG and presence of syncope, seizures, and sudden death. Five genes have been implicated in Romano-Ward syndrome, the autosomal dominant form of LQTS: KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Mutations in KVLQT1 and KCNE1 also cause the Jervell and Lange-Nielsen syndrome, a form of LQTS associated with deafness, a phenotypic abnormality inherited in an autosomal recessive fashion. We used mutational analyses to screen a pool of 262 unrelated individuals with LQTS for mutations in the 5 defined genes. We identified 134 mutations in addition to the 43 that we previously reported. Eighty of the mutations were novel. The total number of mutations in this population is now 177 (68% of individuals). KVLQT1 (42%) and HERG (45%) accounted for 87% of identified mutations, and SCN5A (8%), KCNE1 (3%), and KCNE2 (2%) accounted for the other 13%. Missense mutations were most common (72%), followed by frameshift mutations (10%), in-frame deletions, and nonsense and splice-site mutations (5% to 7% each). Most mutations resided in intracellular (52%) and transmembrane (30%) domains; 12% were found in pore and 6% in extracellular segments. In most cases (78%), a mutation was found in a single family or an individual.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Generation of patient-specific induced pluripotent stem cell-derived cardiomyocytes as a cellular model of arrhythmogenic right ventricular cardiomyopathy.

              Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a primary heart muscle disorder associated with sudden cardiac death. Its pathophysiology is still poorly understood. We aimed to produce an in vitro cellular model of ARVC using patient-specific induced pluripotent stem cell (iPSC)-derived cardiomyocytes and determine whether the model could recapitulate key features of the disease phenotype. Dermal fibroblasts were obtained from a 30-year-old man with a clinical diagnosis of ARVC, harbouring a plakophilin 2 (PKP2) gene mutation. Four stable iPSC lines were generated using retroviral reprogramming, and functional cardiomyocytes were derived. Gene expression levels of desmosomal proteins (PKP2 and plakoglobin) in cardiomyocytes from ARVC-iPSCs were significantly lower compared with cardiomyocytes from control iPSCs (P< 0.01); there were no significant differences in the expression of desmoplakin, N-cadherin, and connexin 43 between the two groups. Cardiomyocytes derived from ARVC-iPSCs exhibited markedly reduced immunofluorescence signals when stained for PKP2 and plakoglobin, but similar levels of staining for desmoplakin, N-cadherin, and connexin 43 compared with control cardiomyocytes. Transmission electron microscopy showed that ARVC-iPSC cardiomyocytes were larger and contained darker lipid droplets compared with control cardiomyocytes. After 2 weeks of cell exposure to adiopgenic differentiation medium, ARVC-iPSC cardiomyocytes were found to contain a significantly greater amount of lipid, calculated using Oil Red O staining, compared with controls (734 ± 35.6 vs. 8.1 ± 0.49 a.u., respectively; n = 7, P = 0.001). Patient-specific iPSC-derived cardiomyocytes display key features of ARVC, including reduced cell surface localization of desmosomal proteins and a more adipogenic phenotype.
                Bookmark

                Author and article information

                Contributors
                ma.dongrui@nhcs.com.sg
                wei.he.ming@nhcs.com.sg
                lujun1986@hotmail.com
                huangdou1220@gmail.com
                liu.zhenfeng@nhcs.com.sg
                loh.li.jun@nhcs.com.sg
                md.omedul.islam@nhcs.com.sg
                reginald.liew@duke-nus.edu.sg
                winston.shim.s.n@nhcs.com.sg
                stuart.cook@duke-nus.edu.sg
                Journal
                Stem Cell Res Ther
                Stem Cell Res Ther
                Stem Cell Research & Therapy
                BioMed Central (London )
                1757-6512
                19 March 2015
                19 March 2015
                2015
                : 6
                : 1
                : 39
                Affiliations
                [ ]National Heart Research Institute Singapore, National Heart Centre Singapore, 5th Hospital Drive, Singapore, 169609 Singapore
                [ ]Cardiovascular & Metabolic Disorders Program, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857 Singapore
                [ ]National Heart and Lung Institute, Imperial College, South Kensington Campus, London, SW7 2AZ UK
                Article
                27
                10.1186/s13287-015-0027-z
                4396080
                25889101
                775f1541-08d5-4779-bf65-a06f3fa8815c
                © Ma et al.; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 3 August 2014
                : 27 February 2015
                : 27 February 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article