78
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ces locus embedded proteins control the non-ribosomal synthesis of the cereulide toxin in emetic Bacillus cereus on multiple levels

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The emetic toxin cereulide produced by Bacillus cereus is synthesized by the modular enzyme complex Ces that is encoded on a pXO1-like megaplasmid. To decipher the role of the genes adjacent to the structural genes cesA/cesB, coding for the non-ribosomal peptide synthetase (NRPS), gene inactivation- and overexpression mutants of the emetic strain F4810/72 were constructed and their impact on cereulide biosynthesis was assessed. The hydrolase CesH turned out to be a part of the complex regulatory network controlling cereulide synthesis on a transcriptional level, while the ABC transporter CesCD was found to be essential for post-translational control of cereulide synthesis. Using a gene inactivation approach, we show that the NRPS activating function of the phosphopantetheinyl transferase (PPtase) embedded in the ces locus was complemented by a chromosomally encoded Sfp-like PPtase, representing an interesting example for the functional interaction between a plasmid encoded NRPS and a chromosomally encoded activation enzyme. In summary, our results highlight the complexity of cereulide biosynthesis and reveal multiple levels of toxin formation control. ces operon internal genes were shown to play a pivotal role by acting at different levels of toxin production, thus complementing the action of the chromosomal key transcriptional regulators AbrB and CodY.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Biosynthesis of nonribosomal peptides1.

          Bacteria and fungi use large multifunctional enzymes, the so-called nonribosomal peptide synthetases (NRPSs), to produce peptides of broad structural and biological activity. Biochemical studies have contributed substantially to the understanding of the key principles of these modular enzymes that can draw on a much larger number of catalytic tools for the incorporation of unusual features compared with the ribosomal system. Several crystal structures of NRPS-domains have yielded deep insight into the catalytic mechanisms involved and have led to a better prediction of the products assembled and to the construction of hybrid enzymes. In addition to the structure-function relationship of the core- and tailoring-domains of NRPSs, which is the main focus of this review, different biosynthetic strategies and essential enzymes for posttranslational modification and editing are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis.

            Bacillus cereus is an opportunistic pathogen causing food poisoning manifested by diarrhoeal or emetic syndromes. It is closely related to the animal and human pathogen Bacillus anthracis and the insect pathogen Bacillus thuringiensis, the former being used as a biological weapon and the latter as a pesticide. B. anthracis and B. thuringiensis are readily distinguished from B. cereus by the presence of plasmid-borne specific toxins (B. anthracis and B. thuringiensis) and capsule (B. anthracis). But phylogenetic studies based on the analysis of chromosomal genes bring controversial results, and it is unclear whether B. cereus, B. anthracis and B. thuringiensis are varieties of the same species or different species. Here we report the sequencing and analysis of the type strain B. cereus ATCC 14579. The complete genome sequence of B. cereus ATCC 14579 together with the gapped genome of B. anthracis A2012 enables us to perform comparative analysis, and hence to identify the genes that are conserved between B. cereus and B. anthracis, and the genes that are unique for each species. We use the former to clarify the phylogeny of the cereus group, and the latter to determine plasmid-independent species-specific markers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A new enzyme superfamily - the phosphopantetheinyl transferases.

              All polyketide synthases, fatty acid synthases, and non-ribosomal peptide synthetases require posttranslational modification of their constituent acyl carrier protein domain(s) to become catalytically active. The inactive apoproteins are converted to their active holo-forms by posttranslational transfer of the 4'-phosphopantetheinyl (P-pant) moiety of coenzyme A to the sidechain hydroxyl of a conserved serine residue in each acyl carrier protein domain. The first P-pant transferase to be cloned and characterized was the recently reported Escherichia coli enzyme ACPS, responsible for apo to holo conversion of fatty acid synthase. Surprisingly, initial searches of sequence databases did not reveal any proteins with significant peptide sequence similarity with ACPS. Through refinement of sequence alignments that indicated low level similarity with the ACPS peptide sequence, we identified two consensus motifs shared among several potential ACPS homologs. This has led to the identification of a large family of proteins having 12-22 % similarity with ACPS, which are putative P-pant transferases. Three of these proteins, E. coli EntD and o195, and B. subtilis Sfp, have been overproduced, purified and found to have P-pant transferase activity, confirming that the observed low level of sequence homology correctly predicted catalytic function. Three P-pant transferases are now known to be present in E. coli (ACPS, EntD and o195); ACPS and EntD are specific for the activation of fatty acid synthase and enterobactin synthetase, respectively. The apo-protein substrate for o195 has not yet been identified. Sfp is responsible for the activation of the surfactin synthetase. The specificity of ACPS and EntD for distinct P-pant-requiring enzymes suggests that each P-pant-requiring synthase has its own partner enzyme responsible for apo to holo activation of its acyl carrier domains. This is the first direct evidence that in organisms containing multiple P-pant-requiring pathways, each pathway has its own posttranslational modifying activity.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                13 October 2015
                2015
                : 6
                : 1101
                Affiliations
                [1] 1Department of Microbiology, Central Institute for Food and Nutrition Research (Zentralinstitut für Ernährungs- und Lebensmittelforschung), Technische Universität München Freising, Germany
                [2] 2Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna Vienna, Austria
                [3] 3Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München Freising, Germany
                [4] 4Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München Freising, Germany
                Author notes

                Edited by: Michael Gänzle, University of Alberta, Canada

                Reviewed by: Jinshui Zheng, Huazhong Agricultural University, China; Anne-Brit Kolstø, University of Oslo, Norway

                *Correspondence: Monika Ehling-Schulz, Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria, monika.ehling-schulz@ 123456vetmeduni.ac.at

                Present address: Elrike Frenzel, Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Groningen, Netherlands

                These authors have contributed equally to this work.

                This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2015.01101
                4602138
                26528255
                77582083-1250-44d2-b491-6c670d1c38f4
                Copyright © 2015 Lücking, Frenzel, Rütschle, Marxen, Stark, Hofmann, Scherer and Ehling-Schulz.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 27 July 2015
                : 23 September 2015
                Page count
                Figures: 6, Tables: 2, Equations: 0, References: 57, Pages: 13, Words: 0
                Funding
                Funded by: German Ministry of Economics and Technology
                Award ID: AiF 15186 N
                Funded by: FEI (Forschungskreis der Ernährungsindustrie e.V., Bonn)
                Award ID: AiF 16845 N
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                bacillus cereus,ces gene cluster,regulation,cesh,cesp,cesc,cesd,cereulide synthetase
                Microbiology & Virology
                bacillus cereus, ces gene cluster, regulation, cesh, cesp, cesc, cesd, cereulide synthetase

                Comments

                Comment on this article