Immunotherapy of gastrointestinal cancers is challenging; however, several lines of evidence suggest that adoptive transfer of stimulated or modified immune cells support not only protective role of immune cells in tumor microenvironment, but actively participate in the elimination of cancer cells.
In vivo studies employing cancer cell-derived allograft murine models of gastrointestinal cancers were performed. The effects of T helper (Th) 2 cells on gastrointestinal cancers growth and tumor microenvironment composition using adoptive transfer of Th2 cells, interleukin (IL)-5 treatment, and immunofluorescence, multiplex and real-time PCR were explored.
Here, we show that Th2 cells play an essential role in the inhibition of colon and pancreas cancers progression. In murine models of gastrointestinal tumors using adoptive transfer of Th2 cells, we identify that Th2 cells are responsible for generation of apoptotic factors and affect macrophage as well as eosinophil recruitment into tumors where they produce cytotoxic factors. Moreover, we found that Th2 cells lead to IL-5 hypersecretion, which links the anti-tumorigenic function of Th2 cells and eosinophils. Importantly, we noted that recombinant IL-5 administration is also related with inhibition of gastrointestinal tumor growth. Finally, using an in vitro approach, we documented that both Th2 cells and eosinophils are directly responsible for gastrointestinal cancer cell killing.