42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Trans-ethnic genome-wide association studies: advantages and challenges of mapping in diverse populations

      research-article
      ,
      Genome Medicine
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genome-wide association studies (GWASs) are the method most often used by geneticists to interrogate the human genome, and they provide a cost-effective way to identify the genetic variants underpinning complex traits and diseases. Most initial GWASs have focused on genetically homogeneous cohorts from European populations given the limited availability of ethnic minority samples and so as to limit population stratification effects. Transethnic studies have been invaluable in explaining the heritability of common quantitative traits, such as height, and in examining the genetic architecture of complex diseases, such as type 2 diabetes. They provide an opportunity for large-scale signal replication in independent populations and for cross-population meta-analyses to boost statistical power. In addition, transethnic GWASs enable prioritization of candidate genes, fine-mapping of functional variants, and potentially identification of SNPs associated with disease risk in admixed populations, by taking advantage of natural differences in genomic linkage disequilibrium across ethnically diverse populations. Recent efforts to assess the biological function of variants identified by GWAS have highlighted the need for large-scale replication, meta-analyses and fine-mapping across worldwide populations of ethnically diverse genetic ancestries. Here, we review recent advances and new approaches that are important to consider when performing, designing or interpreting transethnic GWASs, and we highlight existing challenges, such as the limited ability to handle heterogeneity in linkage disequilibrium across populations and limitations in dissecting complex architectures, such as those found in recently admixed populations.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide association studies for complex traits: consensus, uncertainty and challenges.

          The past year has witnessed substantial advances in understanding the genetic basis of many common phenotypes of biomedical importance. These advances have been the result of systematic, well-powered, genome-wide surveys exploring the relationships between common sequence variation and disease predisposition. This approach has revealed over 50 disease-susceptibility loci and has provided insights into the allelic architecture of multifactorial traits. At the same time, much has been learned about the successful prosecution of association studies on such a scale. This Review highlights the knowledge gained, defines areas of emerging consensus, and describes the challenges that remain as researchers seek to obtain more complete descriptions of the susceptibility architecture of biomedical traits of interest and to translate the information gathered into improvements in clinical management.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            GWAS of 126,559 individuals identifies genetic variants associated with educational attainment.

            A genome-wide association study (GWAS) of educational attainment was conducted in a discovery sample of 101,069 individuals and a replication sample of 25,490. Three independent single-nucleotide polymorphisms (SNPs) are genome-wide significant (rs9320913, rs11584700, rs4851266), and all three replicate. Estimated effects sizes are small (coefficient of determination R(2) ≈ 0.02%), approximately 1 month of schooling per allele. A linear polygenic score from all measured SNPs accounts for ≈2% of the variance in both educational attainment and cognitive function. Genes in the region of the loci have previously been associated with health, cognitive, and central nervous system phenotypes, and bioinformatics analyses suggest the involvement of the anterior caudate nucleus. These findings provide promising candidate SNPs for follow-up work, and our effect size estimates can anchor power analyses in social-science genetics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Rare Variants Create Synthetic Genome-Wide Associations

              Introduction Efforts to fine map the causal variants responsible for genome-wide association studies (GWAS) signals have been largely predicated on the common disease common variant theory, postulating a common variant as the culprit for observed associations. This has led to extensive resequencing efforts that have been largely unsuccessful [1]–[5]. Here, we explore the possibility that part of the reason for this may be that the disease class causing an observed association may consist of multiple low-frequency variants across large regions of the genome—a phenomenon we call synthetic association. For convenience, these less common variants will be referred to here as “rare,” but we emphasize that we use this term loosely, only to refer to variants less common than those routinely studied in GWAS. The basic idea of how synthetic associations emerge in this model is illustrated in Figure 1, which shows how rare variants, by chance, can occur disproportionately in some parts of a gene genealogy. Any variant “higher up in the genealogy” that partitions those parts of the genealogy containing more disease variants than average will be identified as disease-associated. It is well appreciated that a noncausal variant will show association with a causal variant if the two are in strong linkage disequilibrium (LD). We use the previously introduced term synthetic association [6], however, to describe how such indirect association can occur between a common variant and at least one and possibly many rarer causal variants. Using the term synthetic as opposed to indirect emphasizes that the properties of the association signal are very different when the responsible variant or variants are much less frequent than the marker that carries the signal, as we detail below. 10.1371/journal.pbio.1000294.g001 Figure 1 Example genealogies showing causal variants and the strongest association for a common variant. (A) A genealogy with 10,000 original haplotypes was generated with 3,000 cases and 3,000 controls, genotype relative risk (γ) = 4, and nine causal variants. The branches containing the strongest synthetic association are indicated in blue. The branches containing the rare causal variants are in red. (B) A second genealogy was generated using the same parameters. These genealogies demonstrate two scenarios with genome-wide significant synthetic associations: the first (upper genealogy) had a high risk allele frequency (RAF = 0.49), and the second (lower genealogy) had a low RAF (0.08). To assess the tendency of rare disease-causing variants to create synthetic signals of association that are credited to single polymorphisms that are much more common in the population than the causal variants, we have simulated 10,000 haplotypes based on a coalescent model in a region either with or without recombination (Materials and Methods). We assumed that gene variants that influence disease have an allele frequency between 0.005 and 0.02, which is generally below the range of reliable detection (either by inclusion or indirect representation) using the genome-wide association platforms currently in use. We assumed a baseline probability of disease of φ for individuals with none of the rare genetic risk factors. The presence of at least one rare risk allele at the locus increased the probability of disease from φ to γ. We considered two values of φ (0.01, 0.1) and chose values of the penetrance γ such that the genotypic relative risk (GRR) of the rare causal variants varied incrementally between 2 and 6, where GRR is the ratio γ/φ. These values were chosen to explore the space around a GRR of 4, a threshold above which consistent linkage signals would be expected [7]. We simulated scenarios with one, three, five, seven, and nine rare causal variants. Results Across the conditions we have studied, not only is it possible to achieve genome-wide significance for common variants when one or more rare variants are the only contributors to disease, it is often the likely outcome (Figure 2). Overall, 30% of the simulations were able to detect an association with a common SNP at genome-wide significance (p 5%, Hardy-Weinberg equilibrium p-value >1×10−6, SNP call rate >95%), using the PLINK software [40]. For the sickle cell anemia GWAS, we compared 194 cases and 7,407 controls of inferred African ancestry via multidimensional scaling, with a genomic control inflation factor of 1.01. For hearing loss, we performed a GWAS on 418 cases and 6,892 control subjects, all of whom were of genetically inferred European ancestry via multidimensional scaling, with a genomic control inflation factor of 1.02.
                Bookmark

                Author and article information

                Contributors
                liyun@mail.med.upenn.edu
                bkeating@mail.med.upenn.edu
                Journal
                Genome Med
                Genome Med
                Genome Medicine
                BioMed Central (London )
                1756-994X
                31 October 2014
                2014
                : 6
                : 10
                : 91
                Affiliations
                [ ]The Center for Applied Genomics, 1,016 Abramson Building, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
                [ ]Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
                [ ]Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
                [ ]Department of Surgery, Division of Transplantation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
                Article
                91
                10.1186/s13073-014-0091-5
                4254423
                25473427
                7749d6c2-489a-4e2f-8b47-59511d81c9ac
                © Li and Keating; licensee BioMed Central Ltd. 2014

                The licensee has exclusive rights to distribute this article, in any medium, for 12 months following its publication. After this time, the article is available under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                Categories
                Review
                Custom metadata
                © The Author(s) 2014

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article