18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of NRF2 in Bone Metabolism – Friend or Foe?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bone metabolism is closely related to oxidative stress. As one of the core regulatory factors of oxidative stress, NRF2 itself and its regulation of oxidative stress are both involved in bone metabolism. NRF2 plays an important and controversial role in the regulation of bone homeostasis in osteoblasts, osteoclasts and other bone cells. The role of NRF2 in bone is complex and affected by several factors, such as its expression levels, age, sex, the presence of various physiological and pathological conditions, as well as its interaction with certains transcription factors that maintain the normal physiological function of the bone tissue. The properties of NRF2 agonists have protective effects on the survival of osteogenic cells, including osteoblasts, osteocytes and stem cells. Activation of NRF2 directly inhibits osteoclast differentiation by resisting oxidative stress. The effects of NRF2 inhibition and hyperactivation on animal skeleton are still controversial, the majority of the studies suggest that the presence of NRF2 is indispensable for the acquisition and maintenance of bone mass, as well as the protection of bone mass under various stress conditions. More studies show that hyperactivation of NRF2 may cause damage to bone formation, while moderate activation of NRF2 promotes increased bone mass. In addition, the effects of NRF2 on the bone phenotype are characterized by sexual dimorphism. The efficacy of NRF2-activated drugs for bone protection and maintenance has been verified in a large number of in vivo and in vitro studies. Additional research on the role of NRF2 in bone metabolism will provide novel targets for the etiology and treatment of osteoporosis.

          Related collections

          Most cited references137

          • Record: found
          • Abstract: found
          • Article: not found

          Osteoclast differentiation and activation.

          Osteoclasts are specialized cells derived from the monocyte/macrophage haematopoietic lineage that develop and adhere to bone matrix, then secrete acid and lytic enzymes that degrade it in a specialized, extracellular compartment. Discovery of the RANK signalling pathway in the osteoclast has provided insight into the mechanisms of osteoclastogenesis and activation of bone resorption, and how hormonal signals impact bone structure and mass. Further study of this pathway is providing the molecular basis for developing therapeutics to treat osteoporosis and other diseases of bone loss.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Osteoporosis

            Fractures resulting from osteoporosis become increasingly common in women after age 55 years and men after age 65 years, resulting in substantial bone-associated morbidities, and increased mortality and health-care costs. Research advances have led to a more accurate assessment of fracture risk and have increased the range of therapeutic options available to prevent fractures. Fracture risk algorithms that combine clinical risk factors and bone mineral density are now widely used in clinical practice to target high-risk individuals for treatment. The discovery of key pathways regulating bone resorption and formation has identified new approaches to treatment with distinctive mechanisms of action. Osteoporosis is a chronic condition and long-term, sometimes lifelong, management is required. In individuals at high risk of fracture, the benefit versus risk profile is likely to be favourable for up to 10 years of treatment with bisphosphonates or denosumab. In people at a very high or imminent risk of fracture, therapy with teriparatide or abaloparatide should be considered; however, since treatment duration with these drugs is restricted to 18-24 months, treatment should be continued with an antiresorptive drug. Individuals at high risk of fractures do not receive adequate treatment and strategies to address this treatment gap-eg, widespread implementation of Fracture Liaison Services and improvement of adherence to therapy-are important challenges for the future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The KEAP1-NRF2 System: a Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis.

              The Kelch-like ECH-associated protein 1-NF-E2-related factor 2 (KEAP1-NRF2) system forms the major node of cellular and organismal defense against oxidative and electrophilic stresses of both exogenous and endogenous origins. KEAP1 acts as a cysteine thiol-rich sensor of redox insults, whereas NRF2 is a transcription factor that robustly transduces chemical signals to regulate a battery of cytoprotective genes. KEAP1 represses NRF2 activity under quiescent conditions, whereas NRF2 is liberated from KEAP1-mediated repression on exposure to stresses. The rapid inducibility of a response based on a derepression mechanism is an important feature of the KEAP1-NRF2 system. Recent studies have unveiled the complexities of the functional contributions of the KEAP1-NRF2 system and defined its broader involvement in biological processes, including cell proliferation and differentiation, as well as cytoprotection. In this review, we describe historical milestones in the initial characterization of the KEAP1-NRF2 system and provide a comprehensive overview of the molecular mechanisms governing the functions of KEAP1 and NRF2, as well as their roles in physiology and pathology. We also refer to the clinical significance of the KEAP1-NRF2 system as an important prophylactic and therapeutic target for various diseases, particularly aging-related disorders. We believe that controlled harnessing of the KEAP1-NRF2 system is a key to healthy aging and well-being in humans.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                23 February 2022
                2022
                : 13
                : 813057
                Affiliations
                [1] 1 The First Clinical College of Lanzhou University , Lanzhou, China
                [2] 2 Department of Endocrinology, The First Hospital of Lanzhou University , Lanzhou, China
                Author notes

                Edited by: Melissa Orlandin Premaor, Federal University of Minas Gerais, Brazil

                Reviewed by: Kok Yong Chin, National University of Malaysia, Malaysia; Mark B. Meyer, University of Wisconsin-Madison, United States; Chuandong Wang, Shanghai Jiaotong University, China

                *Correspondence: Xulei Tang, xulei_tang@ 123456126.com

                †These authors have contributed equally to this work and share first authorship

                This article was submitted to Bone Research, a section of the journal Frontiers in Endocrinology

                Article
                10.3389/fendo.2022.813057
                8906930
                35282459
                774201df-8b9f-4ed4-b3d9-c20404438711
                Copyright © 2022 Han, Yang, An, Jiang, Fu and Tang

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 November 2021
                : 05 January 2022
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 137, Pages: 14, Words: 6871
                Funding
                Funded by: National Natural Science Foundation of China , doi 10.13039/501100001809;
                Categories
                Endocrinology
                Review

                Endocrinology & Diabetes
                nrf2,osteoporosis,reactive oxygen species,osteoblasts,osteoclasts
                Endocrinology & Diabetes
                nrf2, osteoporosis, reactive oxygen species, osteoblasts, osteoclasts

                Comments

                Comment on this article