6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A preliminary study of solid-waste coal gangue based biomineralization as eco-friendly underground backfill material: Material preparation and macro-micro analyses.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Solid-waste coal gangue (CG) mixed with cement as underground backfilling material is widely applied in coal mines throughout China. However, this material can pollute the environment during its production, preparation, and transportation, which is mainly caused by cement. As a cement-free eco-friendly technology, microbially induced carbonate precipitation (MICP) technology can produce biomineralization products to consolidate loose grains, and the microbial growth environment is adapted to underground temperature with no pollution. To this end, this study gets the Bacillus pasteurii with special resistance by strain domestication, proposes a CG-based bio-mineralized underground backfilling material without using cement, and analyses the characteristics of it from macro- to microscopic perspectives by dissolution test, scanning electron microscopy (SEM), Energy-dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results indicate that strain domestication leads to B. pasteurii, which can withstand CG leaching solution and 1 M urea simultaneously. This satisfies the basic requirements of CG based mineralized material. Through the circulation perfusion method, the intact CG based biomineralized specimens are obtained. Macroscopically, the bacteria bind gangue grains into a whole with high biomineral content (11.66%). The utilization rate of mineralizing solution is up to 66.82% which makes good use of raw materials. Microscopically, a new crystal formation is observed, and CG particles are consolidated well where the crystals precipitate to fill the pores and bind the particles together. Hence this method has a significant influence on the deposition of biominerals. Meanwhile the biomineralization improves the microstructure considerably and bonds the CG particles as a whole. A comprehensive analysis of the test results shows that, from an environment viewpoint, the preliminary study of new CG based bio-mineralized material is successful.

          Related collections

          Author and article information

          Journal
          Sci Total Environ
          The Science of the total environment
          Elsevier BV
          1879-1026
          0048-9697
          May 20 2021
          : 770
          Affiliations
          [1 ] State Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China; School of Mines, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China.
          [2 ] State Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China; School of Mines, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China. Electronic address: zjxiong@163.com.
          [3 ] State Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China; School of Mines, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China. Electronic address: limeng1989@cumt.edu.cn.
          Article
          S0048-9697(21)00307-7
          10.1016/j.scitotenv.2021.145241
          33513489
          771b9dc6-3e89-4399-b652-e178ef60f537
          History

          Bacillus pasteurii,Strain domestication,Solid-waste coal gangue,Circulation perfusion method,Bio-mineralized underground backfilling material

          Comments

          Comment on this article