0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Dietary Vitamin C on the Growth Performance, Biochemical Parameters, and Antioxidant Activity of Coho Salmon Oncorhynchus kisutch (Walbaum, 1792) Postsmolts

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vitamin C (VC) plays an essential role in fish physiological function and normal growth. However, its effects and requirement of coho salmon Oncorhynchus kisutch (Walbaum, 1792) are still unknown. Based on the influences on growth, serum biochemical parameters, and antioxidative ability, an assessment of dietary VC requirement for coho salmon postsmolts (183.19 ± 1.91 g) was conducted with a ten-week feeding trial. Seven isonitrogenous (45.66% protein) and isolipidic (10.76% lipid) diets were formulated to include graded VC concentrations of 1.8, 10.9, 50.8, 100.5, 197.3, 293.8, and 586.7 mg/kg, respectively. Results showed that VC markedly improved the growth performance indexes and liver VC concentration, enhanced the hepatic and serum antioxidant activities, and increased the contents of serum alkaline phosphatase (AKP) activity, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and total cholesterol (TC) whereas decreased the serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) activities, and triglyceride (TG) level. Polynomial analysis showed that the optimal VC levels in the diet of coho salmon postsmolts were 188.10, 190.68, 224.68, 132.83, 156.57, 170.12, 171.00, 185.50, 142.77, and 93.08 mg/kg on the basis of specific growth rate (SGR), feed conversion ratio (FCR), liver VC concentration, catalase (CAT), hepatic superoxide dismutase (SOD) activities, malondialdehyde (MDA) content, and serum total antioxidative capacity (T-AOC), AKP, AST, and ALT activities, respectively. The dietary VC requirement was in the range of 93.08–224.68 mg/kg for optimum growth performance, serum enzyme activities, and antioxidant capacity of coho salmon postsmolts.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          Oxidants, oxidative stress and the biology of ageing.

          Living in an oxygenated environment has required the evolution of effective cellular strategies to detect and detoxify metabolites of molecular oxygen known as reactive oxygen species. Here we review evidence that the appropriate and inappropriate production of oxidants, together with the ability of organisms to respond to oxidative stress, is intricately connected to ageing and life span.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxidative stress: oxidants and antioxidants.

            H Sies (1997)
            An imbalance between oxidants and antioxidants in favour of the oxidants, potentially leading to damage, is termed 'oxidative stress'. Oxidants are formed as a normal product of aerobic metabolism but can be produced at elevated rates under pathophysiological conditions. Antioxidant defense involves several strategies, both enzymatic and non-enzymatic. In the lipid phase, tocopherols and carotenes as well as oxy-carotenoids are of interest, as are vitamin A and ubiquinols. In the aqueous phase, there are ascorbate, glutathione and other compounds. In addition to the cytosol, the nuclear and mitochondrial matrices and extracellular fluids are protected. Overall, these low molecular mass antioxidant molecules add significantly to the defense provided by the enzymes superoxide dismutase, catalase and glutathione peroxidases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Omega-3 fatty acids EPA and DHA: health benefits throughout life.

              Omega-3 [(n-3)] fatty acids have been linked to healthy aging throughout life. Recently, fish-derived omega-3 fatty acids EPA and DHA have been associated with fetal development, cardiovascular function, and Alzheimer's disease. However, because our bodies do not efficiently produce some omega-3 fatty acids from marine sources, it is necessary to obtain adequate amounts through fish and fish-oil products. Studies have shown that EPA and DHA are important for proper fetal development, including neuronal, retinal, and immune function. EPA and DHA may affect many aspects of cardiovascular function including inflammation, peripheral artery disease, major coronary events, and anticoagulation. EPA and DHA have been linked to promising results in prevention, weight management, and cognitive function in those with very mild Alzheimer's disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Aquac Nutr
                Aquac Nutr
                ANU
                Aquaculture Nutrition
                Hindawi
                1353-5773
                1365-2095
                2022
                26 December 2022
                : 2022
                : 6866578
                Affiliations
                1Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong (Weifang University), Weifang Key Laboratory of Coho Salmon Culturing Facility Engineering, Institute of Modern Facility Fisheries, College of Biology and Oceanography, Weifang University, Weifang 261061, China
                2Shandong Collaborative Innovation Center of Coho Salmon Health Culture Engineering Technology, Shandong Conqueren Marine Technology Co., Ltd., Weifang 261108, China
                Author notes

                Academic Editor: M Xue

                Author information
                https://orcid.org/0000-0001-6920-4536
                https://orcid.org/0000-0002-2656-8417
                https://orcid.org/0000-0003-3773-1926
                https://orcid.org/0000-0003-1392-4408
                https://orcid.org/0000-0002-9583-2875
                https://orcid.org/0000-0002-7100-2607
                https://orcid.org/0000-0001-7329-0772
                https://orcid.org/0000-0002-3837-7343
                Article
                10.1155/2022/6866578
                9973166
                36860458
                771637af-1f35-4daa-a724-488c663352bf
                Copyright © 2022 Cong-mei Xu et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 April 2022
                : 19 September 2022
                : 1 December 2022
                Funding
                Funded by: Natural Science Foundation of Shandong Province
                Award ID: ZR2020MC174
                Funded by: Scientific and Technologic Development Program of Weifang
                Award ID: 2019ZJ1046
                Funded by: Major Scientific and Technological Innovation Project of Shandong Province
                Award ID: 2019JZZY020710
                Award ID: 2018CXGC0102
                Categories
                Research Article

                Comments

                Comment on this article