6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prevalence and antimicrobial resistance profiles of Salmonella spp. in poultry meat

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The spread of multidrug resistant (MDR) Salmonella strains, along the poultry supply chain, can represent a relevant threat to human health. This study aimed to evaluate the prevalence and antimicrobial resistance of Salmonella spp. isolated from poultry meat for human consumption. Between 2019 and 2021, 145 samples were analyzed according to ISO 6579-1:2017. The strains isolated were identified by using biochemical-enzymatic assays and serotyping, according to the Kauffmann-White-Le Minor scheme. The antibiotic susceptibility tests were determined using the Kirby-Bauer method. Forty Salmonella spp. strains were isolated and serotyping showed Salmonella Infantis to be predominant. 80% of the isolated strains were MDR and identified as S. Infantis. This study confirms the circulation of MDR Salmonella isolated from poultry meat and highlights the predominance of the S. Infantis serovar, which represents an emerging risk factor under the One Health holistic approach.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Understanding the mechanisms and drivers of antimicrobial resistance.

          To combat the threat to human health and biosecurity from antimicrobial resistance, an understanding of its mechanisms and drivers is needed. Emergence of antimicrobial resistance in microorganisms is a natural phenomenon, yet antimicrobial resistance selection has been driven by antimicrobial exposure in health care, agriculture, and the environment. Onward transmission is affected by standards of infection control, sanitation, access to clean water, access to assured quality antimicrobials and diagnostics, travel, and migration. Strategies to reduce antimicrobial resistance by removing antimicrobial selective pressure alone rely upon resistance imparting a fitness cost, an effect not always apparent. Minimising resistance should therefore be considered comprehensively, by resistance mechanism, microorganism, antimicrobial drug, host, and context; parallel to new drug discovery, broad ranging, multidisciplinary research is needed across these five levels, interlinked across the health-care, agriculture, and environment sectors. Intelligent, integrated approaches, mindful of potential unintended results, are needed to ensure sustained, worldwide access to effective antimicrobials.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Emergence of a Clonal Lineage of Multidrug-Resistant ESBL-Producing Salmonella Infantis Transmitted from Broilers and Broiler Meat to Humans in Italy between 2011 and 2014

            We report the spread of a clone of multidrug-resistant (MDR), ESBL-producing (bla CTX-M-1) Salmonella enterica subsp. enterica serovar Infantis, in the Italian broiler chicken industry and along the food-chain. This was first detected in Italy in 2011 and led to human infection in Italy in 2013–2014.A set (n = 49) of extended-spectrum cephalosporin (ESC)-resistant (R) isolates of S. Infantis (2011–2014) from humans, food-producing animals and meat thereof, were studied along with a selected set of earlier and more recent ESC-susceptible (ESC-S) isolates (n = 42, 2001–2014). They were characterized by macrorestriction-PFGE analysis and genetic environment of ESC-resistance. Isolates representative of PFGE-patterns and origin were submitted to Whole Genome Sequencing. The emerging ESC-R clone, detected mainly from broiler chickens, broiler meat and humans, showed a minimum pattern of clinical resistance to cefotaxime, tetracycline, sulfonamides, and trimethoprim, beside ciprofloxacin microbiological resistance (MIC 0.25 mg/L). All isolates of this clone harbored a conjugative megaplasmid (~ 280–320 Kb), similar to that described in ESC-susceptible S. Infantis in Israel (pESI-like) in 2014. This megaplasmid carried the ESBL gene bla CTX-M-1, and additional genes [tet(A), sul1, dfrA1 and dfrA14] mediating cefotaxime, tetracycline, sulfonamide, and trimethoprim resistance. It also contained genes conferring enhanced colonization capability, virulence (fimbriae, yersiniabactin), resistance and fitness (qacE1, mer) in the intensive-farming environment. This emerging clone of S. Infantis has been causing infections in humans, most likely through the broiler industry. Since S. Infantis is among major serovars causing human infections in Europe and is an emerging non-typhoidal Salmonella globally, further spread of this lineage in primary productions deserves quick and thorough risk-management strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2018/2019

              (2021)
              Abstract Data on antimicrobial resistance (AMR) in zoonotic and indicator bacteria from humans, animals and food are collected annually by the EU Member States (MSs), jointly analysed by the EFSA and the ECDC and reported in a yearly EU Summary Report. The annual monitoring of AMR in animals and food within the EU is targeted at selected animal species corresponding to the reporting year. The 2018 monitoring specifically focussed on poultry and their derived carcases/meat, while the monitoring performed in 2019 specifically focused on pigs and calves under 1 year of age, as well as their derived carcases/meat. Monitoring and reporting of AMR in 2018/2019 included data regarding Salmonella, Campylobacter and indicator Escherichia coli isolates, as well as data obtained from the specific monitoring of presumptive ESBL‐/AmpC‐/carbapenemase‐producing E. coli isolates. Additionally, some MSs reported voluntary data on the occurrence of meticillin‐resistant Staphylococcus aureus in animals and food, with some countries also providing data on antimicrobial susceptibility. This report provides an overview of the main findings of the 2018/2019 harmonised AMR monitoring in the main food‐producing animal populations monitored, in related carcase/meat samples and in humans. Where available, data monitoring obtained from pigs, calves, broilers, laying hens and turkeys, as well as from carcase/meat samples and humans were combined and compared at the EU level, with particular emphasis on multidrug resistance, complete susceptibility and combined resistance patterns to critically important antimicrobials, as well as Salmonella and E. coli isolates possessing ESBL‐/AmpC‐/carbapenemase phenotypes. The outcome indicators for AMR in food‐producing animals such as complete susceptibility to the harmonised panel of antimicrobials in E. coli and the prevalence of ESBL‐/AmpC‐producing E. coli have been also specifically analysed over the period 2015–2019.
                Bookmark

                Author and article information

                Journal
                Ital J Food Saf
                Ital J Food Saf
                IJFS
                Italian Journal of Food Safety
                PAGEPress Publications, Pavia, Italy
                2239-7132
                08 June 2023
                08 June 2023
                : 12
                : 2
                : 11135
                Affiliations
                Experimental Zooprophylactic Institute of Sicily A. Mirri , Palermo, Italy
                Author notes
                Experimental Zooprophylactic Institute of Sicily A. Mirri, Via Gino Marinuzzi n. 3, 90129, Palermo, Italy. 320 844 1802. gaspare.b@ 123456alice.it

                Contributions: all authors contributed equally.

                Conflict of interest: the authors declare no potential conflict of interest.

                Availability of data and materials: data and materials are available by the authors.

                Conference presentation: this paper was presented at the XXXI National Conference of the Italian Association of Veterinary Food Hygienists (AIVI), 2022 September 22-23-24, Italy.

                Publisher's note: all claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

                Article
                10.4081/ijfs.2023.11135
                10316271
                37405148
                76e3c398-7e9f-4db7-8ba0-639c37b213e3
                ©Copyright: the Author(s)

                This article is distributed under the terms of the Creative Commons Attribution Noncommercial License ( by-nc 4.0) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

                History
                : 30 December 2022
                : 07 February 2023
                Page count
                Figures: 1, Tables: 2, Equations: 0, References: 20, Pages: 5
                Categories
                Article

                poultry meat,salmonella spp,s. infantis,amr,mdr
                poultry meat, salmonella spp, s. infantis, amr, mdr

                Comments

                Comment on this article