3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Compromised fractalkine signaling delays microglial occupancy of emerging modules in the multisensory midbrain

      1 , 1 , 1
      Glia
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Synaptic pruning by microglia is necessary for normal brain development.

          Microglia are highly motile phagocytic cells that infiltrate and take up residence in the developing brain, where they are thought to provide a surveillance and scavenging function. However, although microglia have been shown to engulf and clear damaged cellular debris after brain insult, it remains less clear what role microglia play in the uninjured brain. Here, we show that microglia actively engulf synaptic material and play a major role in synaptic pruning during postnatal development in mice. These findings link microglia surveillance to synaptic maturation and suggest that deficits in microglia function may contribute to synaptic abnormalities seen in some neurodevelopmental disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner.

            Microglia are the resident CNS immune cells and active surveyors of the extracellular environment. While past work has focused on the role of these cells during disease, recent imaging studies reveal dynamic interactions between microglia and synaptic elements in the healthy brain. Despite these intriguing observations, the precise function of microglia at remodeling synapses and the mechanisms that underlie microglia-synapse interactions remain elusive. In the current study, we demonstrate a role for microglia in activity-dependent synaptic pruning in the postnatal retinogeniculate system. We show that microglia engulf presynaptic inputs during peak retinogeniculate pruning and that engulfment is dependent upon neural activity and the microglia-specific phagocytic signaling pathway, complement receptor 3(CR3)/C3. Furthermore, disrupting microglia-specific CR3/C3 signaling resulted in sustained deficits in synaptic connectivity. These results define a role for microglia during postnatal development and identify underlying mechanisms by which microglia engulf and remodel developing synapses. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microglia and macrophages in brain homeostasis and disease

              Microglia and non-parenchymal macrophages in the brain are mononuclear phagocytes that are increasingly recognized to be essential players in the development, homeostasis and diseases of the central nervous system. With the availability of new genetic, molecular and pharmacological tools, considerable advances have been made towards our understanding of the embryonic origins, developmental programmes and functions of these cells. These exciting discoveries, some of which are still controversial, also raise many new questions, which makes brain macrophage biology a fast-growing field at the intersection of neuroscience and immunology. Here, we review the current knowledge of how and where brain macrophages are generated, with a focus on parenchymal microglia. We also discuss their normal functions during development and homeostasis, the disturbance of which may lead to various neurodegenerative and neuropsychiatric diseases.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Glia
                Glia
                Wiley
                0894-1491
                1098-1136
                April 2022
                December 28 2021
                April 2022
                : 70
                : 4
                : 697-711
                Affiliations
                [1 ]Department of Biology James Madison University Harrisonburg Virginia USA
                Article
                10.1002/glia.24134
                76b11db2-afad-4de9-a0ee-aa45eae848c3
                © 2022

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article