12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Clausena anisata and Dysphania ambrosioides essential oils: from ethno-medicine to modern uses as effective insecticides

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world.

          Botanical insecticides have long been touted as attractive alternatives to synthetic chemical insecticides for pest management because botanicals reputedly pose little threat to the environment or to human health. The body of scientific literature documenting bioactivity of plant derivatives to arthropod pests continues to expand, yet only a handful of botanicals are currently used in agriculture in the industrialized world, and there are few prospects for commercial development of new botanical products. Pyrethrum and neem are well established commercially, pesticides based on plant essential oils have recently entered the marketplace, and the use of rotenone appears to be waning. A number of plant substances have been considered for use as insect antifeedants or repellents, but apart from some natural mosquito repellents, little commercial success has ensued for plant substances that modify arthropod behavior. Several factors appear to limit the success of botanicals, most notably regulatory barriers and the availability of competing products (newer synthetics, fermentation products, microbials) that are cost-effective and relatively safe compared with their predecessors. In the context of agricultural pest management, botanical insecticides are best suited for use in organic food production in industrialized countries but can play a much greater role in the production and postharvest protection of food in developing countries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints.

            Recently, a growing number of plant essential oils (EOs) have been tested against a wide range of arthropod pests with promising results. EOs showed high effectiveness, multiple mechanisms of action, low toxicity on non-target vertebrates and potential for the use of byproducts as reducing and stabilizing agents for the synthesis of nanopesticides. However, the number of commercial biopesticides based on EOs remains low. We analyze the main strengths and weaknesses arising from the use of EO-based biopesticides. Key challenges for future research include: (i) development of efficient stabilization processes (e.g., microencapsulation); (ii) simplification of the complex and costly biopesticide authorization requirements; and (iii) optimization of plant growing conditions and extraction processes leading to EOs of homogeneous chemical composition.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Essential oils for the development of eco-friendly mosquito larvicides: A review

                Bookmark

                Author and article information

                Journal
                Environmental Science and Pollution Research
                Environ Sci Pollut Res
                Springer Nature America, Inc
                0944-1344
                1614-7499
                April 2018
                October 1 2017
                April 2018
                : 25
                : 11
                : 10493-10503
                Article
                10.1007/s11356-017-0267-9
                764d616d-d18e-4b78-ae08-cda55bf36d44
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article