15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protein–Protein Interactions in Virus–Host Systems

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To study virus–host protein interactions, knowledge about viral and host protein architectures and repertoires, their particular evolutionary mechanisms, and information on relevant sources of biological data is essential. The purpose of this review article is to provide a thorough overview about these aspects. Protein domains are basic units defining protein interactions, and the uniqueness of viral domain repertoires, their mode of evolution, and their roles during viral infection make viruses interesting models of study. Mutations at protein interfaces can reduce or increase their binding affinities by changing protein electrostatics and structural properties. During the course of a viral infection, both pathogen and cellular proteins are constantly competing for binding partners. Endogenous interfaces mediating intraspecific interactions—viral–viral or host–host interactions—are constantly targeted and inhibited by exogenous interfaces mediating viral–host interactions. From a biomedical perspective, blocking such interactions is the main mechanism underlying antiviral therapies. Some proteins are able to bind multiple partners, and their modes of interaction define how fast these “hub proteins” evolve. “Party hubs” have multiple interfaces; they establish simultaneous/stable (domain–domain) interactions, and tend to evolve slowly. On the other hand, “date hubs” have few interfaces; they establish transient/weak (domain–motif) interactions by means of short linear peptides (15 or fewer residues), and can evolve faster. Viral infections are mediated by several protein–protein interactions (PPIs), which can be represented as networks (protein interaction networks, PINs), with proteins being depicted as nodes, and their interactions as edges. It has been suggested that viral proteins tend to establish interactions with more central and highly connected host proteins. In an evolutionary arms race, viral and host proteins are constantly changing their interface residues, either to evade or to optimize their binding capabilities. Apart from gaining and losing interactions via rewiring mechanisms, virus–host PINs also evolve via gene duplication (paralogy); conservation (orthology); horizontal gene transfer (HGT) (xenology); and molecular mimicry (convergence). The last sections of this review focus on PPI experimental approaches and their limitations, and provide an overview of sources of biomolecular data for studying virus–host protein interactions.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Specificity and stability in topology of protein networks

            Molecular networks guide the biochemistry of a living cell on multiple levels: its metabolic and signalling pathways are shaped by the network of interacting proteins, whose production, in turn, is controlled by the genetic regulatory network. To address topological properties of these two networks we quantify correlations between connectivities of interacting nodes and compare them to a null model of a network, in which al links were randomly rewired. We find that for both interaction and regulatory networks, links between highly connected proteins are systematically suppressed, while those between a highly-connected and low-connected pairs of proteins are favored. This effect decreases the likelihood of cross talk between different functional modules of the cell, and increases the overall robustness of a network by localizing effects of deleterious perturbations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions.

              I Xenarios (2002)
              The Database of Interacting Proteins (DIP: http://dip.doe-mbi.ucla.edu) is a database that documents experimentally determined protein-protein interactions. It provides the scientific community with an integrated set of tools for browsing and extracting information about protein interaction networks. As of September 2001, the DIP catalogs approximately 11 000 unique interactions among 5900 proteins from >80 organisms; the vast majority from yeast, Helicobacter pylori and human. Tools have been developed that allow users to analyze, visualize and integrate their own experimental data with the information about protein-protein interactions available in the DIP database.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                17 August 2017
                2017
                : 8
                : 1557
                Affiliations
                Department of Life Sciences, Centre for Integrative Systems Biology and Bioinformatics, Imperial College London London, United Kingdom
                Author notes

                Edited by: Dirk Dittmer, University of North Carolina at Chapel Hill, United States

                Reviewed by: Toyoyuki Ose, Hokkaido University, Japan; Kevin Coombs, University of Manitoba, Canada

                *Correspondence: John W. Pinney j.pinney@ 123456imperial.ac.uk

                This article was submitted to Virology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2017.01557
                5562681
                28861068
                763739b2-9a03-4eb1-8e7e-7147b0ee4169
                Copyright © 2017 Brito and Pinney.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 06 April 2017
                : 02 August 2017
                Page count
                Figures: 6, Tables: 2, Equations: 0, References: 88, Pages: 11, Words: 7877
                Categories
                Microbiology
                Review

                Microbiology & Virology
                ppi,virus-host interactions,protein interaction networks,molecular evolution,viral evolution,databases,structural biology,integrative biology

                Comments

                Comment on this article