5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Segmental duplications and their variation in a complete human genome

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite their importance in disease and evolution, highly identical segmental duplications (SDs) are among the last regions of the human reference genome (GRCh38) to be fully sequenced. Using a complete telomere-to-telomere human genome (T2T-CHM13), we present a comprehensive view of human SD organization. SDs account for nearly one-third of the additional sequence, increasing the genome-wide estimate from 5.4 to 7.0% [218 million base pairs (Mbp)]. An analysis of 268 human genomes shows that 91% of the previously unresolved T2T-CHM13 SD sequence (68.3 Mbp) better represents human copy number variation. Comparing long-read assemblies from human ( n = 12) and nonhuman primate ( n = 5) genomes, we systematically reconstruct the evolution and structural haplotype diversity of biomedically relevant and duplicated genes. This analysis reveals patterns of structural heterozygosity and evolutionary differences in SD organization between humans and other primates.

          Abstract

          INTRODUCTION

          Large, high-identity duplicated sequences—termed segmental duplications (SDs)—are frequently the last regions of genomes to be sequenced and assembled. While the human reference genome provided a roadmap of the SD landscape, >50% of the remaining gaps correspond to regions of complex SDs. 

          RATIONALE

          SDs are major sources of evolutionary gene innovations and contribute disproportionately to genetic variation within and between ape species. With the complete human genome (T2T-CHM13), researchers have the potential to identify genes and uncover patterns of human genetic variation. 

          RESULTS

          We identified 51 million base pairs (Mbp) of additional human SD in T2T-CHM13 and now estimate that 7% of the human genome consists of SDs [(218 Mbp of 3.1 billion base pairs (Gbp)]. SDs make up two-thirds (45.1 of 68.1 Mbp) of acrocentric short arms, and these SDs are the largest in the human genome (see the figure, panel A). Additionally, 54% of acrocentric SDs are copy number variable or map to different chromosomes among the six individuals examined. A detailed comparison between the current reference genome (GRCh38) and T2T-CHM13 for SD content identifies 81 Mbp of previously unresolved or structurally variable SDs. Short-read whole-genome sequence data from a diversity panel of 268 humans show that human copy number is nine times (59.26 versus 6.55 Mbp) more likely to match T2T-CHM13 rather than GRCh38, including 119 protein-coding genes (see the figure, panel B). Using long-read–sequencing data from 25 human haplotypes, we investigated patterns of human genetic variation identifying significant increases in structural and single-nucleotide diversity. We identified gene-rich regions (e.g., TBC1D3 ) that vary by hundreds of kilo–base pairs and gene copy number between individuals showing some of the highest genome-wide structural heterozygosity (85 to 90%). Our analysis identified 182 candidate protein-coding genes as well as the complete sequence for structurally variable gene models that were previously unresolved. Among these is the complete gene structure of lipoprotein A ( LPA ), including the expanded kringle IV repeat domain. Reduced copies of this domain are among the strongest genetic associations with cardiovascular disease, especially among African Americans, and sequencing of multiple human haplotypes identified not only copy number variation but also other forms of rare coding variation potentially relevant to disease risk. Finally, we compared global methylation and expression patterns between duplicated and unique genes. Transcriptionally inactive duplicate genes are more likely to map to hypomethylated genomic regions; however, specifically over the transcription start site we observe an increase in methylation, suggesting that as many as two-thirds of duplicated genes are epigenetically silenced. Additionally, SD genes show a high degree of concordance between methylation profiles and transcription levels, allowing us to define the actively transcribed members of high-identity gene families that are otherwise indistinguishable by coding sequence.

          CONCLUSION

          A complete human genome provides a more comprehensive understanding of the organization, expression, and regulation of duplicated genes. Our analysis reveals underappreciated patterns of human genetic diversity and suggests characteristic features of methylation and gene regulation. This resource will serve as a critical baseline for improved gene annotation, genotyping, and previously unknown associations for some of the most dynamic regions of our genome.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found

          Basic local alignment search tool.

          A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score. Recent mathematical results on the stochastic properties of MSP scores allow an analysis of the performance of this method as well as the statistical significance of alignments it generates. The basic algorithm is simple and robust; it can be implemented in a number of ways and applied in a variety of contexts including straightforward DNA and protein sequence database searches, motif searches, gene identification searches, and in the analysis of multiple regions of similarity in long DNA sequences. In addition to its flexibility and tractability to mathematical analysis, BLAST is an order of magnitude faster than existing sequence comparison tools of comparable sensitivity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies

            Motivation: Phylogenies are increasingly used in all fields of medical and biological research. Moreover, because of the next-generation sequencing revolution, datasets used for conducting phylogenetic analyses grow at an unprecedented pace. RAxML (Randomized Axelerated Maximum Likelihood) is a popular program for phylogenetic analyses of large datasets under maximum likelihood. Since the last RAxML paper in 2006, it has been continuously maintained and extended to accommodate the increasingly growing input datasets and to serve the needs of the user community. Results: I present some of the most notable new features and extensions of RAxML, such as a substantial extension of substitution models and supported data types, the introduction of SSE3, AVX and AVX2 vector intrinsics, techniques for reducing the memory requirements of the code and a plethora of operations for conducting post-analyses on sets of trees. In addition, an up-to-date 50-page user manual covering all new RAxML options is available. Availability and implementation: The code is available under GNU GPL at https://github.com/stamatak/standard-RAxML. Contact: alexandros.stamatakis@h-its.org Supplementary information: Supplementary data are available at Bioinformatics online.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              BEDTools: a flexible suite of utilities for comparing genomic features

              Motivation: Testing for correlations between different sets of genomic features is a fundamental task in genomics research. However, searching for overlaps between features with existing web-based methods is complicated by the massive datasets that are routinely produced with current sequencing technologies. Fast and flexible tools are therefore required to ask complex questions of these data in an efficient manner. Results: This article introduces a new software suite for the comparison, manipulation and annotation of genomic features in Browser Extensible Data (BED) and General Feature Format (GFF) format. BEDTools also supports the comparison of sequence alignments in BAM format to both BED and GFF features. The tools are extremely efficient and allow the user to compare large datasets (e.g. next-generation sequencing data) with both public and custom genome annotation tracks. BEDTools can be combined with one another as well as with standard UNIX commands, thus facilitating routine genomics tasks as well as pipelines that can quickly answer intricate questions of large genomic datasets. Availability and implementation: BEDTools was written in C++. Source code and a comprehensive user manual are freely available at http://code.google.com/p/bedtools Contact: aaronquinlan@gmail.com; imh4y@virginia.edu Supplementary information: Supplementary data are available at Bioinformatics online.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                April 2022
                April 2022
                : 376
                : 6588
                Affiliations
                [1 ]Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
                [2 ]Department of Biology, University of Bari, Aldo Moro, Bari 70125, Italy.
                [3 ]Department of Molecular Biology and Genetics, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
                [4 ]UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA.
                [5 ]Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
                [6 ]Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
                Article
                10.1126/science.abj6965
                35357917
                762fabe9-5a53-4d03-9a8d-8454fb42355f
                © 2022
                History

                Comments

                Comment on this article