22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integrative modeling of multi-omics data to identify cancer drivers and infer patient-specific gene activity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          High throughput technologies have been used to profile genes in multiple different dimensions, such as genetic variation, copy number, gene and protein expression, epigenetics, metabolomics. Computational analyses often treat these different data types as independent, leading to an explosion in the number of features making studies under-powered and more importantly do not provide a comprehensive view of the gene’s state. We sought to infer gene activity by integrating different dimensions using biological knowledge of oncogenes and tumor suppressors.

          Results

          This paper proposes an integrative model of oncogene and tumor suppressor activity in cells which is used to identify cancer drivers and compute patient-specific gene activity scores. We have developed a Fuzzy Logic Modeling (FLM) framework to incorporate biological knowledge with multi-omics data such as somatic mutation, gene expression and copy number measurements. The advantage of using a fuzzy logic approach is to abstract meaningful biological rules from low-level numerical data. Biological knowledge is often qualitative, thus combining it with quantitative numerical measurements may leverage new biological insights about a gene’s state. We show that the oncogenic and altered tumor suppressing state of a gene can be better characterized by integrating different molecular measurements with biological knowledge than by each data type alone. We validate the gene activity score using data from the Cancer Cell Line Encyclopedia and drug sensitivity data for five compounds: BYL719 (PIK3CA inhibitor), PLX4720 (BRAF inhibitor), AZD6244 (MEK inhibitor), Erlotinib (EGFR inhibitor), and Nutlin-3 (MDM2 inhibitor). The integrative score improves prediction of drug sensitivity for the known drug targets of these compounds compared to each data type alone. The gene activity scores are also used to cluster colorectal cancer cell lines. Two subtypes of CRCs were found and potential cancer drivers and therapeutic targets for each of the subtypes were identified.

          Conclusions

          We propose a fuzzy logic based approach to infer gene activity in cancer by integrating numerical data with descriptive biological knowledge. We compute general patient-specific gene-level scores useful to determine the oncogenic or tumor suppressor status of cancer gene drivers and to cluster or classify patients.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12918-016-0260-9) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.

          The cBioPortal for Cancer Genomics (http://cbioportal.org) provides a Web resource for exploring, visualizing, and analyzing multidimensional cancer genomics data. The portal reduces molecular profiling data from cancer tissues and cell lines into readily understandable genetic, epigenetic, gene expression, and proteomic events. The query interface combined with customized data storage enables researchers to interactively explore genetic alterations across samples, genes, and pathways and, when available in the underlying data, to link these to clinical outcomes. The portal provides graphical summaries of gene-level data from multiple platforms, network visualization and analysis, survival analysis, patient-centric queries, and software programmatic access. The intuitive Web interface of the portal makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries. Here, we provide a practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM

            Motivation: High-throughput data is providing a comprehensive view of the molecular changes in cancer tissues. New technologies allow for the simultaneous genome-wide assay of the state of genome copy number variation, gene expression, DNA methylation and epigenetics of tumor samples and cancer cell lines. Analyses of current data sets find that genetic alterations between patients can differ but often involve common pathways. It is therefore critical to identify relevant pathways involved in cancer progression and detect how they are altered in different patients. Results: We present a novel method for inferring patient-specific genetic activities incorporating curated pathway interactions among genes. A gene is modeled by a factor graph as a set of interconnected variables encoding the expression and known activity of a gene and its products, allowing the incorporation of many types of omic data as evidence. The method predicts the degree to which a pathway's activities (e.g. internal gene states, interactions or high-level ‘outputs’) are altered in the patient using probabilistic inference. Compared with a competing pathway activity inference approach called SPIA, our method identifies altered activities in cancer-related pathways with fewer false-positives in both a glioblastoma multiform (GBM) and a breast cancer dataset. PARADIGM identified consistent pathway-level activities for subsets of the GBM patients that are overlooked when genes are considered in isolation. Further, grouping GBM patients based on their significant pathway perturbations divides them into clinically-relevant subgroups having significantly different survival outcomes. These findings suggest that therapeutics might be chosen that target genes at critical points in the commonly perturbed pathway(s) of a group of patients. Availability:Source code available at http://sbenz.github.com/Paradigm Contact: jstuart@soe.ucsc.edu Supplementary information: Supplementary data are available at Bioinformatics online.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prospective breast cancer risk prediction model for women undergoing screening mammography.

              Risk prediction models for breast cancer can be improved by the addition of recently identified risk factors, including breast density and use of hormone therapy. We used prospective risk information to predict a diagnosis of breast cancer in a cohort of 1 million women undergoing screening mammography. There were 2,392,998 eligible screening mammograms from women without previously diagnosed breast cancer who had had a prior mammogram in the preceding 5 years. Within 1 year of the screening mammogram, 11,638 women were diagnosed with breast cancer. Separate logistic regression risk models were constructed for premenopausal and postmenopausal examinations by use of a stringent (P<.0001) criterion for the inclusion of risk factors. Risk models were constructed with 75% of the data and validated with the remaining 25%. Concordance of the predicted with the observed outcomes was assessed by a concordance (c) statistic after logistic regression model fit. All statistical tests were two-sided. Statistically significant risk factors for breast cancer diagnosis among premenopausal women included age, breast density, family history of breast cancer, and a prior breast procedure. For postmenopausal women, the statistically significant factors included age, breast density, race, ethnicity, family history of breast cancer, a prior breast procedure, body mass index, natural menopause, hormone therapy, and a prior false-positive mammogram. The model may identify high-risk women better than the Gail model, although predictive accuracy was only moderate. The c statistics were 0.631 (95% confidence interval [CI] = 0.618 to 0.644) for premenopausal women and 0.624 (95% CI = 0.619 to 0.630) for postmenopausal women. Breast density is a strong additional risk factor for breast cancer, although it is unknown whether reduction in breast density would reduce risk. Our risk model may be able to identify women at high risk for breast cancer for preventive interventions or more intensive surveillance.
                Bookmark

                Author and article information

                Contributors
                anapavel@bu.edu
                dmitriy.sonkin@novartis.com
                anupamar@gmail.com
                Journal
                BMC Syst Biol
                BMC Syst Biol
                BMC Systems Biology
                BioMed Central (London )
                1752-0509
                11 February 2016
                11 February 2016
                2016
                : 10
                : 16
                Affiliations
                [ ]Graduate Program in Bioinformatics, Boston University, 24 Cummington Mall, Boston, 02215 MA USA
                [ ]Section of Computational Biomedicine, Boston University School of Medicine, 72 East Concord Street, Boston, 02118 MA USA
                [ ]Novartis Institutes for Biomedical Research, 250 Massachusetts Ave, Cambridge, 02139 MA USA
                [ ]Duke University Medical Center, Durham, 27708 NC USA
                Article
                260
                10.1186/s12918-016-0260-9
                4750289
                26864072
                761f34d4-67e7-4733-a242-012b4267a373
                © Pavel et al. 2016

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 4 May 2015
                : 25 January 2016
                Categories
                Methodology Article
                Custom metadata
                © The Author(s) 2016

                Quantitative & Systems biology
                fuzzy logic modeling,gene activity,oncogene,tumor suppressor,drug sensitivity,colorectal cancer subtypes

                Comments

                Comment on this article