6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Blockade of EP4 by ASP7657 Modulates Myeloid Cell Differentiation In Vivo and Enhances the Antitumor Effect of Radiotherapy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The tumor microenvironment (TME) is thought to influence the antitumor efficacy of immuno-oncology agents through various products of both tumor and stromal cells. One immune-suppressive factor is prostaglandin E 2 (PGE 2), a lipid mediator whose biosynthesis is regulated by ubiquitously expressed cyclooxygenase- (COX-) 1 and inducible COX-2. By activating its receptors, PGE 2 induces immune suppression to modulate differentiation of myeloid cells into myeloid-derived suppressor cells (MDSCs) rather than dendritic cells (DCs). Pharmacological blockade of prostaglandin E receptor 4 (EP4) causes a decrease in MDSCs, reprogramming of macrophage polarization, and increase in tumor-infiltrated T cells, leading to enhancement of antitumor immunity in preclinical models. Here, we report the effects of the highly potent EP4 antagonist ASP7657 on the DC population in tumor and antitumor immune activation in an immunocompetent mouse tumor model. Oral administration of ASP7657 inhibited tumor growth, which was accompanied by an increase in intratumor DC and CD8 + T cell populations and a decrease in the M-MDSC population in a CT26 immunocompetent mouse model. The antitumor activity of ASP7657 was dependent on CD8 + T cells and enhanced when combined with an antiprogrammed cell death-1 (PD-1) antibody. Notably, ASP7657 also significantly enhanced the antitumor efficacy of radiotherapy in an anti-PD-1 antibody refractory model. These results indicate that the therapeutic potential of ASP7657 arises via upregulation of DCs and subsequent CD8 + T cell activation in addition to suppression of MDSCs in mouse models and that combining EP4 antagonists with radiotherapy or an anti-PD-1 antibody can improve antitumor efficacy.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Oncology meets immunology: the cancer-immunity cycle.

          The genetic and cellular alterations that define cancer provide the immune system with the means to generate T cell responses that recognize and eradicate cancer cells. However, elimination of cancer by T cells is only one step in the Cancer-Immunity Cycle, which manages the delicate balance between the recognition of nonself and the prevention of autoimmunity. Identification of cancer cell T cell inhibitory signals, including PD-L1, has prompted the development of a new class of cancer immunotherapy that specifically hinders immune effector inhibition, reinvigorating and potentially expanding preexisting anticancer immune responses. The presence of suppressive factors in the tumor microenvironment may explain the limited activity observed with previous immune-based therapies and why these therapies may be more effective in combination with agents that target other steps of the cycle. Emerging clinical data suggest that cancer immunotherapy is likely to become a key part of the clinical management of cancer. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Immunogenic cell death in cancer therapy.

            Depending on the initiating stimulus, cancer cell death can be immunogenic or nonimmunogenic. Immunogenic cell death (ICD) involves changes in the composition of the cell surface as well as the release of soluble mediators, occurring in a defined temporal sequence. Such signals operate on a series of receptors expressed by dendritic cells to stimulate the presentation of tumor antigens to T cells. We postulate that ICD constitutes a prominent pathway for the activation of the immune system against cancer, which in turn determines the long-term success of anticancer therapies. Hence, suboptimal regimens (failing to induce ICD), selective alterations in cancer cells (preventing the emission of immunogenic signals during ICD), or defects in immune effectors (abolishing the perception of ICD by the immune system) can all contribute to therapeutic failure. We surmise that ICD and its subversion by pathogens also play major roles in antiviral immune responses.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Hallmarks of response, resistance, and toxicity to immune checkpoint blockade

                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2023
                28 November 2023
                : 2023
                : 7133726
                Affiliations
                Immuno-oncology, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
                Author notes

                Academic Editor: Malay Chaklader

                Author information
                https://orcid.org/0000-0001-5987-1415
                https://orcid.org/0009-0009-3929-1718
                Article
                10.1155/2023/7133726
                10697779
                38058393
                75fe8de8-22da-4806-bff4-a087d5a25e49
                Copyright © 2023 Toshihide Nishibata et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 February 2023
                : 20 October 2023
                : 31 October 2023
                Funding
                Funded by: Astellas Pharma
                Categories
                Research Article

                Comments

                Comment on this article