2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Synchronicity: The Role of Midbrain Dopamine in Whole-Brain Coordination

      article-commentary

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Midbrain dopamine seems to play an outsized role in motivated behavior and learning. Widely associated with mediating reward-related behavior, decision making, and learning, dopamine continues to generate controversies in the field. While many studies and theories focus on what dopamine cells encode, the question of how the midbrain derives the information it encodes is poorly understood and comparatively less addressed. Recent anatomical studies suggest greater diversity and complexity of afferent inputs than previously appreciated, requiring rethinking of prior models. Here, we elaborate a hypothesis that construes midbrain dopamine as implementing a Bayesian selector in which individual dopamine cells sample afferent activity across distributed brain substrates, comprising evidence to be evaluated on the extent to which stimuli in the on-going sensorimotor stream organizes distributed, parallel processing, reflecting implicit value. To effectively generate a temporally resolved phasic signal, a population of dopamine cells must exhibit synchronous activity. We argue that synchronous activity across a population of dopamine cells signals consensus across distributed afferent substrates, invigorating responding to recognized opportunities and facilitating further learning. In framing our hypothesis, we shift from the question of how value is computed to the broader question of how the brain achieves coordination across distributed, parallel processing. We posit the midbrain is part of an “axis of agency” in which the prefrontal cortex (PFC), basal ganglia (BGS), and midbrain form an axis mediating control, coordination, and consensus, respectively.

          Related collections

          Most cited references99

          • Record: found
          • Abstract: found
          • Article: not found

          The debate over dopamine's role in reward: the case for incentive salience.

          Debate continues over the precise causal contribution made by mesolimbic dopamine systems to reward. There are three competing explanatory categories: 'liking', learning, and 'wanting'. Does dopamine mostly mediate the hedonic impact of reward ('liking')? Does it instead mediate learned predictions of future reward, prediction error teaching signals and stamp in associative links (learning)? Or does dopamine motivate the pursuit of rewards by attributing incentive salience to reward-related stimuli ('wanting')? Each hypothesis is evaluated here, and it is suggested that the incentive salience or 'wanting' hypothesis of dopamine function may be consistent with more evidence than either learning or 'liking'. In brief, recent evidence indicates that dopamine is neither necessary nor sufficient to mediate changes in hedonic 'liking' for sensory pleasures. Other recent evidence indicates that dopamine is not needed for new learning, and not sufficient to directly mediate learning by causing teaching or prediction signals. By contrast, growing evidence indicates that dopamine does contribute causally to incentive salience. Dopamine appears necessary for normal 'wanting', and dopamine activation can be sufficient to enhance cue-triggered incentive salience. Drugs of abuse that promote dopamine signals short circuit and sensitize dynamic mesolimbic mechanisms that evolved to attribute incentive salience to rewards. Such drugs interact with incentive salience integrations of Pavlovian associative information with physiological state signals. That interaction sets the stage to cause compulsive 'wanting' in addiction, but also provides opportunities for experiments to disentangle 'wanting', 'liking', and learning hypotheses. Results from studies that exploited those opportunities are described here. In short, dopamine's contribution appears to be chiefly to cause 'wanting' for hedonic rewards, more than 'liking' or learning for those rewards.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A framework for mesencephalic dopamine systems based on predictive Hebbian learning.

            We develop a theoretical framework that shows how mesencephalic dopamine systems could distribute to their targets a signal that represents information about future expectations. In particular, we show how activity in the cerebral cortex can make predictions about future receipt of reward and how fluctuations in the activity levels of neurons in diffuse dopamine systems above and below baseline levels would represent errors in these predictions that are delivered to cortical and subcortical targets. We present a model for how such errors could be constructed in a real brain that is consistent with physiological results for a subset of dopaminergic neurons located in the ventral tegmental area and surrounding dopaminergic neurons. The theory also makes testable predictions about human choice behavior on a simple decision-making task. Furthermore, we show that, through a simple influence on synaptic plasticity, fluctuations in dopamine release can act to change the predictions in an appropriate manner.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum.

              Clinical manifestations in diseases affecting the dopamine system include deficits in emotional, cognitive, and motor function. Although the parallel organization of specific corticostriatal pathways is well documented, mechanisms by which dopamine might integrate information across different cortical/basal ganglia circuits are less well understood. We analyzed a collection of retrograde and anterograde tracing studies to understand how the striatonigrostriatal (SNS) subcircuit directs information flow between ventromedial (limbic), central (associative), and dorsolateral (motor) striatal regions. When viewed as a whole, the ventromedial striatum projects to a wide range of the dopamine cells and receives a relatively small dopamine input. In contrast, the dorsolateral striatum (DLS) receives input from a broad expanse of dopamine cells and has a confined input to the substantia nigra (SN). The central striatum (CS) receives input from and projects to a relatively wide range of the SN. The SNS projection from each striatal region contains three substantia nigra components: a dorsal group of nigrostriatal projecting cells, a central region containing both nigrostriatal projecting cells and its reciprocal striatonigral terminal fields, and a ventral region that receives a specific striatonigral projection but does not contain its reciprocal nigrostriatal projection. Examination of results from multiple tracing experiments simultaneously demonstrates an interface between different striatal regions via the midbrain dopamine cells that forms an ascending spiral between regions. The shell influences the core, the core influences the central striatum, and the central striatum influences the dorsolateral striatum. This anatomical arrangement creates a hierarchy of information flow and provides an anatomical basis for the limbic/cognitive/motor interface via the ventral midbrain.
                Bookmark

                Author and article information

                Journal
                eNeuro
                eNeuro
                eneuro
                eneuro
                eNeuro
                eNeuro
                Society for Neuroscience
                2373-2822
                19 April 2019
                3 May 2019
                Mar-Apr 2019
                : 6
                : 2
                : ENEURO.0345-18.2019
                Affiliations
                [1 ]Queens College and the Graduate Center, City University New York , New York 11367, NY
                [2 ]Department of Neuroscience and Pharmacology, University of Copenhagen , Copenhagen 2200, Denmark
                Author notes

                The authors declare no competing financial interests.

                Author contributions: J.A.B. and J.K.D. wrote the paper.

                This work was supported by the National Institutes of Health, National Institute on Drug Abuse Grant DA046058 (to J.A.B.).

                Correspondence should be addressed to Jeff A. Beeler at jbeeler@ 123456qc.cuny.edu
                Author information
                https://orcid.org/0000-0002-1344-1337
                https://orcid.org/0000-0002-7058-3331
                Article
                eN-COM-0345-18
                10.1523/ENEURO.0345-18.2019
                6500793
                75e81cc1-7772-4322-8e1c-891c71b9672d
                Copyright © 2019 Beeler and Dreyer

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

                History
                : 31 August 2018
                : 10 March 2019
                : 31 March 2019
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 137, Pages: 17, Words: 14360
                Funding
                Funded by: National Institutes of Health, NIDA
                Award ID: DA046058
                Categories
                5
                5.10
                Commentary
                Integrative Systems
                Custom metadata
                March/April 2019

                coherence,dopamine,phasic dopamine,striatum,synchronous dopamine activity

                Comments

                Comment on this article