6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metamizole is a Moderate Cytochrome P450 Inducer Via the Constitutive Androstane Receptor and a Weak Inhibitor of CYP1A2

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metamizole is an analgesic and antipyretic drug used intensively in certain countries. Previous studies have shown that metamizole induces cytochrome (CYP) 2B6 and possibly CYP3A4. So far, it is unknown whether metamizole induces additional CYPs and by which mechanism. Therefore, we assessed the activity of 6 different CYPs in 12 healthy male subjects before and after treatment with 3 g of metamizole per day for 1 week using a phenotyping cocktail approach. In addition, we investigated whether metamizole induces CYPs by an interaction with the constitutive androstane receptor (CAR) or the pregnane X receptor (PXR) in HepaRG cells. In the clinical study, we confirmed a moderate induction of CYP2B6 (decrease in the efavirenz area under the plasma concentration time curve (AUC) by 79%) and 3A4 (decrease in the midazolam AUC by 68%) by metamizole. In addition, metamizole weakly induced CYP2C9 (decrease in the flurbiprofen AUC by 22%) and moderately CYP2C19 (decrease in the omeprazole AUC by 66%) but did not alter CYP2D6 activity. In addition, metamizole weakly inhibited CYP1A2 activity (1.79‐fold increase in the caffeine AUC). We confirmed these results in HepaRG cells, where 4‐MAA, the principal metabolite of metamizole, induced the mRNA expression of CYP2B6, 2C9, 2C19, and 3A4. In HepaRG cells with a stable knockout of PXR or CAR, we could demonstrate that CYP induction by 4‐MAA depends on CAR and not on PXR. In conclusion, metamizole is a broad CYP inducer by an interaction with CAR and an inhibitor of CYP1A2. Regarding the widespread use of metamizole, these findings are of substantial clinical relevance.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective Serotonin Reuptake Inhibitors.

          Selective serotonin reuptake inhibitors (SSRIs) are primary treatment options for major depressive and anxiety disorders. CYP2D6 and CYP2C19 polymorphisms can influence the metabolism of SSRIs, thereby affecting drug efficacy and safety. We summarize evidence from the published literature supporting these associations and provide dosing recommendations for fluvoxamine, paroxetine, citalopram, escitalopram, and sertraline based on CYP2D6 and/or CYP2C19 genotype (updates at www.pharmgkb.org).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer.

            The mammalian CYP1A1, CYP1A2, and CYP1B1 genes (encoding cytochromes P450 1A1, 1A2, and 1B1, respectively) are regulated by the aromatic hydrocarbon receptor (AHR). The CYP1 enzymes are responsible for both metabolically activating and detoxifying numerous polycyclic aromatic hydrocarbons (PAHs) and aromatic amines present in combustion products. Many substrates for CYP1 enzymes are AHR ligands. Differences in AHR affinity between inbred mouse strains reflect variations in CYP1 inducibility and clearly have been shown to be associated with differences in risk of toxicity or cancer caused by PAHs and arylamines. Variability in the human AHR affinity exists, but differences in human risk of toxicity or cancer related to AHR activation remain unproven. Mouse lines having one or another of the Cyp1 genes disrupted have shown paradoxical effects; in the test tube or in cell culture these enzymes show metabolic activation of PAHs or arylamines, whereas in the intact animal these enzymes are sometimes more important in the role of detoxification than metabolic potentiation. Intact animal data contradict pharmaceutical company policies that routinely test drugs under development; if a candidate drug shows CYP1 inducibility, further testing is generally discontinued for fear of possible toxic or carcinogenic effects. In the future, use of "humanized" mouse lines, containing a human AHR or CYP1 allele in place of the orthologous mouse gene, is one likely approach to show that the AHR and the CYP1 enzymes in human behave similarly to that in mouse.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Analysis of mtDNA/nDNA Ratio in Mice

              The mitochondrial DNA (mtDNA) lacks a protection provided by the nucleosomes in the nuclear DNA and does not have a DNA repair mechanism, making it highly susceptible to damage, which can lead to mtDNA depletion. MtDNA depletion compromises the efficient function of cells and tissues and thus impacts negatively on health. Here, we describe a brief and easy protocol to quantify mtDNA copy number by determining the mtDNA/nDNA ratio that we validated in a cohort of young and aged mice.
                Bookmark

                Author and article information

                Contributors
                stephan.kraehenbuehl@usb.ch
                Journal
                Clin Pharmacol Ther
                Clin Pharmacol Ther
                10.1002/(ISSN)1532-6535
                CPT
                Clinical Pharmacology and Therapeutics
                John Wiley and Sons Inc. (Hoboken )
                0009-9236
                1532-6535
                19 January 2021
                June 2021
                19 January 2021
                : 109
                : 6 ( doiID: 10.1002/cpt.v109.6 )
                : 1505-1516
                Affiliations
                [ 1 ] Division of Clinical Pharmacology & Toxicology University Hospital Basel Basel Switzerland
                [ 2 ] Department of Biomedicine University of Basel Basel Switzerland
                [ 3 ] Biopharmacy Department of Pharmaceutical Sciences University of Basel Basel Switzerland
                [ 4 ] Pharmaceutical Technology Department of Pharmaceutical Sciences University of Basel Basel Switzerland
                [ 5 ] Clinical Pharmacology and Toxicology Department of General Internal Medicine, Inselspital Bern University Hospital University of Bern Bern Switzerland
                [ 6 ] Institute of Pharmacology University of Bern Bern Switzerland
                Author notes
                [*] [* ] Correspondence: Stephan Krähenbühl ( stephan.kraehenbuehl@ 123456usb.ch )

                Article
                CPT2141
                10.1002/cpt.2141
                8247900
                33336382
                75e14509-b636-456f-9b4e-331796c3b308
                © 2020 The Authors. Clinical Pharmacology & Therapeutics published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

                History
                : 21 August 2020
                : 07 November 2020
                Page count
                Figures: 6, Tables: 1, Pages: 12, Words: 7530
                Funding
                Funded by: Swiss National Science foundation , open-funder-registry 10.13039/501100001711;
                Award ID: SNF 31003A_156270
                Categories
                Article
                Research
                Articles
                Custom metadata
                2.0
                June 2021
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.0.2 mode:remove_FC converted:01.07.2021

                Pharmacology & Pharmaceutical medicine
                Pharmacology & Pharmaceutical medicine

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content516

                Cited by5

                Most referenced authors576