13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Effects of age, blood pressure and antihypertensive treatments on retinal arterioles remodeling assessed by adaptive optics :

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Ageing of the conduit arteries.

          Conduit arteries become stiffer with age due to alterations in their morphology and the composition of the their major structural proteins, elastin and collagen. The elastic lamellae undergo fragmentation and thinning, leading to ectasia and a gradual transfer of mechanical load to collagen, which is 100-1000 times stiffer than elastin. Possible causes of this fragmentation are mechanical (fatigue failure) or enzymatic (driven by matrix metallo proteinases (MMP) activity), both of which may have genetic or environmental origins (fetal programming). Furthermore, the remaining elastin itself becomes stiffer, owing to calcification and the formation of cross-links due to advanced glycation end-products (AGEs), a process that affects collagen even more strongly. These changes are accelerated in the presence of disease such as hypertension, diabetes and uraemia and may be exacerbated locally by atherosclerosis. Raised MMP activity, calcification and impaired endothelial function are also associated with a high level of plasma homocysteine, which itself increases with age. Impaired endothelial function leads to increased resting vascular smooth muscle tone and further increases in vascular stiffness and mean and/or pulse pressure. The effect of increased stiffness, whatever its underlying causes, is to reduce the reservoir/buffering function of the conduit arteries near the heart and to increase pulse wave velocity, both of which increase systolic and pulse pressure. These determine the peak load on the heart and the vascular system as a whole, the breakdown of which, like that of any machine, depends more on the maximum loads they must bear than on their average. Reversing or stabilising the increased arterial stiffness associated with age and disease by targeting any or all of its causes provides a number of promising new approaches to the treatment of systolic hypertension and its sequelae, the main causes of mortality and morbidity in the developed world. Copyright (c) 2007 Pathological Society of Great Britain and Ireland.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficient and reliable schemes for nonlinear diffusion filtering.

            Nonlinear diffusion filtering in image processing is usually performed with explicit schemes. They are only stable for very small time steps, which leads to poor efficiency and limits their practical use. Based on a discrete nonlinear diffusion scale-space framework we present semi-implicit schemes which are stable for all time steps. These novel schemes use an additive operator splitting (AOS), which guarantees equal treatment of all coordinate axes. They can be implemented easily in arbitrary dimensions, have good rotational invariance and reveal a computational complexity and memory requirement which is linear in the number of pixels. Examples demonstrate that, under typical accuracy requirements, AOS schemes are at least ten times more efficient than the widely used explicit schemes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reference intervals for common carotid intima-media thickness measured with echotracking: relation with risk factors.

              Common carotid artery intima-media thickness (CCIMT) is widely used as a surrogate marker of atherosclerosis, given its predictive association with cardiovascular disease (CVD). The interpretation of CCIMT values has been hampered by the absence of reference values, however. We therefore aimed to establish reference intervals of CCIMT, obtained using the probably most accurate method at present (i.e. echotracking), to help interpretation of these measures. We combined CCIMT data obtained by echotracking on 24 871 individuals (53% men; age range 15-101 years) from 24 research centres worldwide. Individuals without CVD, cardiovascular risk factors (CV-RFs), and BP-, lipid-, and/or glucose-lowering medication constituted a healthy sub-population (n = 4234) used to establish sex-specific equations for percentiles of CCIMT across age. With these equations, we generated CCIMT Z-scores in different reference sub-populations, thereby allowing for a standardized comparison between observed and predicted ('normal') values from individuals of the same age and sex. In the sub-population without CVD and treatment (n = 14 609), and in men and women, respectively, CCIMT Z-scores were independently associated with systolic blood pressure [standardized βs 0.19 (95% CI: 0.16-0.22) and 0.18 (0.15-0.21)], smoking [0.25 (0.19-0.31) and 0.11 (0.04-0.18)], diabetes [0.19 (0.05-0.33) and 0.19 (0.02-0.36)], total-to-HDL cholesterol ratio [0.07 (0.04-0.10) and 0.05 (0.02-0.09)], and body mass index [0.14 (0.12-0.17) and 0.07 (0.04-0.10)]. We estimated age- and sex-specific percentiles of CCIMT in a healthy population and assessed the association of CV-RFs with CCIMT Z-scores, which enables comparison of IMT values for (patient) groups with different cardiovascular risk profiles, helping interpretation of such measures obtained both in research and clinical settings.
                Bookmark

                Author and article information

                Journal
                Journal of Hypertension
                Journal of Hypertension
                Ovid Technologies (Wolters Kluwer Health)
                0263-6352
                2016
                June 2016
                : 34
                : 6
                : 1115-1122
                Article
                10.1097/HJH.0000000000000894
                27065002
                75a29b9d-b3a7-4e66-a012-ef2c025a39fb
                © 2016
                History

                Comments

                Comment on this article