29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Type I interferon in rheumatic diseases

      ,
      Nature Reviews Rheumatology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P3">The type I interferon pathway has been implicated in the pathogenesis of a number of rheumatic diseases, including systemic lupus erythematosus, Sjögren syndrome, myositis, systemic sclerosis, and rheumatoid arthritis. In normal immune responses, type I interferons have a critical role in the defence against viruses, yet in many rheumatic diseases, large subgroups of patients demonstrate persistent activation of the type I interferon pathway. Genetic variations in type I interferon-related genes are risk factors for some rheumatic diseases, and can explain some of the heterogeneity in type I interferon responses seen between patients within a given disease. Inappropriate activation of the immune response via Toll-like receptors and other nucleic acid sensors also contributes to the dysregulation of the type I interferon pathway in a number of rheumatic diseases. Theoretically, differences in type I interferon activity between patients might predict response to immune-based therapies, as has been demonstrated for rheumatoid arthritis. A number of type I interferon and type I interferon pathway blocking therapies are currently in clinical trials, the results of which are promising thus far. This Review provides an overview of the many ways in which the type I interferon system affects rheumatic diseases. </p>

          Related collections

          Most cited references121

          • Record: found
          • Abstract: found
          • Article: not found

          Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus.

          Systemic lupus erythematosus (SLE) is a complex, inflammatory autoimmune disease that affects multiple organ systems. We used global gene expression profiling of peripheral blood mononuclear cells to identify distinct patterns of gene expression that distinguish most SLE patients from healthy controls. Strikingly, about half of the patients studied showed dysregulated expression of genes in the IFN pathway. Furthermore, this IFN gene expression "signature" served as a marker for more severe disease involving the kidneys, hematopoetic cells, and/or the central nervous system. These results provide insights into the genetic pathways underlying SLE, and identify a subgroup of patients who may benefit from therapies targeting the IFN pathway.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The IRF family transcription factors in immunity and oncogenesis.

            The interferon regulatory factor (IRF) family, consisting of nine members in mammals, was identified in the late 1980s in the context of research into the type I interferon system. Subsequent studies over the past two decades have revealed the versatile and critical functions performed by this transcription factor family. Indeed, many IRF members play central roles in the cellular differentiation of hematopoietic cells and in the regulation of gene expression in response to pathogen-derived danger signals. In particular, the advances made in understanding the immunobiology of Toll-like and other pattern-recognition receptors have recently generated new momentum for the study of IRFs. Moreover, the role of several IRF family members in the regulation of the cell cycle and apoptosis has important implications for understanding susceptibility to and progression of several cancers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Anifrolumab, an Anti–Interferon‐α Receptor Monoclonal Antibody, in Moderate‐to‐Severe Systemic Lupus Erythematosus

              Objective To assess the efficacy and safety of anifrolumab, a type I interferon (IFN) receptor antagonist, in a phase IIb, randomized, double‐blind, placebo‐controlled study of adults with moderate‐to‐severe systemic lupus erythematosus (SLE). Methods Patients (n = 305) were randomized to receive intravenous anifrolumab (300 mg or 1,000 mg) or placebo, in addition to standard therapy, every 4 weeks for 48 weeks. Randomization was stratified by SLE Disease Activity Index 2000 score (<10 or ≥10), oral corticosteroid dosage (<10 or ≥10 mg/day), and type I IFN gene signature test status (high or low) based on a 4‐gene expression assay. The primary end point was the percentage of patients achieving an SLE Responder Index (SRI[4]) response at week 24 with sustained reduction of oral corticosteroids (<10 mg/day and less than or equal to the dose at week 1 from week 12 through 24). Other end points (including SRI[4], British Isles Lupus Assessment Group [BILAG]–based Composite Lupus Assessment [BICLA], modified SRI[6], and major clinical response) were assessed at week 52. The primary end point was analyzed in the modified intent‐to‐treat (ITT) population and type I IFN–high subpopulation. The study result was considered positive if the primary end point was met in either of the 2 study populations. The Type I error rate was controlled at 0.10 (2‐sided), within each of the 2 study populations for the primary end point analysis. Results The primary end point was met by more patients treated with anifrolumab (34.3% of 99 for 300 mg and 28.8% of 104 for 1,000 mg) than placebo (17.6% of 102) (P = 0.014 for 300 mg and P = 0.063 for 1,000 mg, versus placebo), with greater effect size in patients with a high IFN signature at baseline (13.2% in placebo‐treated patients versus 36.0% [P = 0.004] and 28.2% [P = 0.029]) in patients treated with anifrolumab 300 mg and 1,000 mg, respectively. At week 52, patients treated with anifrolumab achieved greater responses in SRI(4) (40.2% versus 62.6% [P < 0.001] and 53.8% [P = 0.043] with placebo, anifrolumab 300 mg, and anifrolumab 1,000 mg, respectively), BICLA (25.7% versus 53.5% [P < 0.001] and 41.2% [P = 0.018], respectively), modified SRI(6) (28.4% versus 49.5% [P = 0.002] and 44.7% [P = 0.015], respectively), major clinical response (BILAG 2004 C or better in all organ domains from week 24 through week 52) (6.9% versus 19.2% [P = 0.012] and 17.3% [P = 0.025], respectively), and several other global and organ‐specific end points. Herpes zoster was more frequent in the anifrolumab‐treated patients (2.0% with placebo treatment versus 5.1% and 9.5% with anifrolumab 300 mg and 1,000 mg, respectively), as were cases reported as influenza (2.0% versus 6.1% and 7.6%, respectively), in the anifrolumab treatment groups. Incidence of serious adverse events was similar between groups (18.8% versus 16.2% and 17.1%, respectively). Conclusion Anifrolumab substantially reduced disease activity compared with placebo across multiple clinical end points in the patients with moderate‐to‐severe SLE.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Rheumatology
                Nat Rev Rheumatol
                Springer Nature
                1759-4790
                1759-4804
                March 21 2018
                March 21 2018
                : 14
                : 4
                : 214-228
                Article
                10.1038/nrrheum.2018.31
                6625751
                29559718
                75a1b8ec-09b8-4fc9-8258-f5750c3066eb
                © 2018
                History

                Comments

                Comment on this article