53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gemcitabine/cannabinoid combination triggers autophagy in pancreatic cancer cells through a ROS-mediated mechanism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gemcitabine (GEM, 2′,2′-difluorodeoxycytidine) is currently used in advanced pancreatic adenocarcinoma, with a response rate of < 20%. The purpose of our work was to improve GEM activity by addition of cannabinoids. Here, we show that GEM induces both cannabinoid receptor-1 (CB1) and cannabinoid receptor-2 (CB2) receptors by an NF- κB-dependent mechanism and that its association with cannabinoids synergistically inhibits pancreatic adenocarcinoma cell growth and increases reactive oxygen species (ROS) induced by single treatments. The antiproliferative synergism is prevented by the radical scavenger N-acetyl--cysteine and by the specific NF- κB inhibitor BAY 11-7085, demonstrating that the induction of ROS by GEM/cannabinoids and of NF- κB by GEM is required for this effect. In addition, we report that neither apoptotic nor cytostatic mechanisms are responsible for the synergistic cell growth inhibition, which is strictly associated with the enhancement of endoplasmic reticulum stress and autophagic cell death. Noteworthy, the antiproliferative synergism is stronger in GEM-resistant pancreatic cancer cell lines compared with GEM-sensitive pancreatic cancer cell lines. The combined treatment strongly inhibits growth of human pancreatic tumor cells xenografted in nude mice without apparent toxic effects. These findings support a key role of the ROS-dependent activation of an autophagic program in the synergistic growth inhibition induced by GEM/cannabinoid combination in human pancreatic cancer cells.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular characterization of a peripheral receptor for cannabinoids.

          The major active ingredient of marijuana, delta 9-tetrahydrocannabinol (delta 9-THC), has been used as a psychoactive agent for thousands of years. Marijuana, and delta 9-THC, also exert a wide range of other effects including analgesia, anti-inflammation, immunosuppression, anticonvulsion, alleviation of intraocular pressure in glaucoma, and attenuation of vomiting. The clinical application of cannabinoids has, however, been limited by their psychoactive effects, and this has led to interest in the biochemical bases of their action. Progress stemmed initially from the synthesis of potent derivatives of delta 9-THC, and more recently from the cloning of a gene encoding a G-protein-coupled receptor for cannabinoids. This receptor is expressed in the brain but not in the periphery, except for a low level in testes. It has been proposed that the nonpsychoactive effects of cannabinoids are either mediated centrally or through direct interaction with other, non-receptor proteins. Here we report the cloning of a receptor for cannabinoids that is not expressed in the brain but rather in macrophages in the marginal zone of spleen.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors.

            A generalized method for analyzing the effects of multiple drugs and for determining summation, synergism and antagonism has been proposed. The derived, generalized equations are based on kinetic principles. The method is relatively simple and is not limited by whether the dose-effect relationships are hyperbolic or sigmoidal, whether the effects of the drugs are mutually exclusive or nonexclusive, whether the ligand interactions are competitive, noncompetitive or uncompetitive, whether the drugs are agonists or antagonists, or the number of drugs involved. The equations for the two most widely used methods for analyzing synergism, antagonism and summation of effects of multiple drugs, the isobologram and fractional product concepts, have been derived and been shown to have limitations in their applications. These two methods cannot be used indiscriminately. The equations underlying these two methods can be derived from a more generalized equation previously developed by us (59). It can be shown that the isobologram is valid only for drugs whose effects are mutually exclusive, whereas the fractional product method is valid only for mutually nonexclusive drugs which have hyperbolic dose-effect curves. Furthermore, in the isobol method, it is laborious to find proper combinations of drugs that would produce an iso-effective curve, and the fractional product method tends to give indication of synergism, since it underestimates the summation of the effect of mutually nonexclusive drugs that have sigmoidal dose-effect curves. The method described herein is devoid of these deficiencies and limitations. The simplified experimental design proposed for multiple drug-effect analysis has the following advantages: It provides a simple diagnostic plot (i.e., the median-effect plot) for evaluating the applicability of the data, and provides parameters that can be directly used to obtain a general equation for the dose-effect relation; the analysis which involves logarithmic conversion and linear regression can be readily carried out with a simple programmable electronic calculator and does not require special graph paper or tables; and the simplicity of the equation allows flexibility of application and the use of a minimum number of data points. This method has been used to analyze experimental data obtained from enzymatic, cellular and animal systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure of a cannabinoid receptor and functional expression of the cloned cDNA.

              Marijuana and many of its constituent cannabinoids influence the central nervous system (CNS) in a complex and dose-dependent manner. Although CNS depression and analgesia are well documented effects of the cannabinoids, the mechanisms responsible for these and other cannabinoid-induced effects are not so far known. The hydrophobic nature of these substances has suggested that cannabinoids resemble anaesthetic agents in their action, that is, they nonspecifically disrupt cellular membranes. Recent evidence, however, has supported a mechanism involving a G protein-coupled receptor found in brain and neural cell lines, and which inhibits adenylate cyclase activity in a dose-dependent, stereoselective and pertussis toxin-sensitive manner. Also, the receptor is more responsive to psychoactive cannabinoids than to non-psychoactive cannabinoids. Here we report the cloning and expression of a complementary DNA that encodes a G protein-coupled receptor with all of these properties. Its messenger RNA is found in cell lines and regions of the brain that have cannabinoid receptors. These findings suggest that this protein is involved in cannabinoid-induced CNS effects (including alterations in mood and cognition) experienced by users of marijuana.
                Bookmark

                Author and article information

                Journal
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group
                2041-4889
                April 2011
                28 April 2011
                1 April 2011
                : 2
                : 4
                : e152
                Affiliations
                [1 ]simpleDepartment of Life and Reproduction Sciences, Biochemistry Section, University of Verona , Verona, Italy
                [2 ]simpleInterdepartmental Laboratory for Medical Research, University of Verona , Verona, Italy
                [3 ]simpleDepartment of Pathology and Diagnostics, University of Verona , Verona, Italy
                [4 ]simpleDepartment of Biochemistry and Biophysics, II University of Naples , Naples, Italy
                [5 ]simpleDepartment of Pharmaceutical and Biomedical Sciences, University of Salerno , Fisciano, Italy
                Author notes
                [* ]simpleDepartment of Life and Reproduction Sciences, Biochemistry Section, University of Verona , Strada Le Grazie 8, Verona 37134, Italy. Tel: +39 045 802 7169; Fax: +39 045 802 7170; E-mail: marta.palmieri@ 123456univr.it
                [6]

                These authors equally contributed to this work.

                Article
                cddis201136
                10.1038/cddis.2011.36
                3122066
                21525939
                7591e80e-8e16-4f17-95f6-066d7c93a47a
                Copyright © 2011 Macmillan Publishers Limited

                This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                History
                : 03 February 2011
                : 22 March 2011
                : 29 March 2011
                Categories
                Original Article

                Cell biology
                pancreatic cancer,reactive oxygen species,cannabinoid,gemcitabine,er stress,autophagy
                Cell biology
                pancreatic cancer, reactive oxygen species, cannabinoid, gemcitabine, er stress, autophagy

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content641

                Cited by90

                Most referenced authors814