The authors show that the magnetization of a magnetostrictive/piezoelectric multiferroic single-domain shape-anisotropic nanomagnet can be switched with very small voltages that generate strain in the magnetostrictive layer. This can be the basis of ultralow power computing and signal processing. With appropriate material choice, the energy dissipated per switching event can be reduced to ∼45 kT at room temperature for a switching delay of ∼100 ns and ∼70 kT for a switching delay of ∼10 ns, if the energy barrier separating the two stable magnetization directions is ∼32 kT. Such devices can be powered by harvesting energy exclusively from the environment without the need for a battery.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.