3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Utility of trabecular bone score in the evaluation of osteoporosis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes.

          Type 2 diabetes mellitus (DM) is associated with higher bone mineral density (BMD) and paradoxically with increased fracture risk. It is not known if low BMD, central to fracture prediction in older adults, identifies fracture risk in patients with DM. To determine if femoral neck BMD T score and the World Health Organization Fracture Risk Algorithm (FRAX) score are associated with hip and nonspine fracture risk in older adults with type 2 DM. Data from 3 prospective observational studies with adjudicated fracture outcomes (Study of Osteoporotic Fractures [December 1998-July 2008]; Osteoporotic Fractures in Men Study [March 2000-March 2009]; and Health, Aging, and Body Composition study [April 1997-June 2007]) were analyzed in older community-dwelling adults (9449 women and 7436 men) in the United States. Self-reported incident fractures, which were verified by radiology reports. Of 770 women with DM, 84 experienced a hip fracture and 262 a nonspine fracture during a mean (SD) follow-up of 12.6 (5.3) years. Of 1199 men with DM, 32 experienced a hip fracture and 133 a nonspine fracture during a mean (SD) follow-up of 7.5 (2.0) years. Age-adjusted hazard ratios (HRs) for 1-unit decrease in femoral neck BMD T score in women with DM were 1.88 (95% confidence interval [CI], 1.43-2.48) for hip fracture and 1.52 (95% CI, 1.31-1.75) for nonspine fracture, and in men with DM were 5.71 (95% CI, 3.42-9.53) for hip fracture and 2.17 (95% CI, 1.75-2.69) for nonspine fracture. The FRAX score was also associated with fracture risk in participants with DM (HRs for 1-unit increase in FRAX hip fracture score, 1.05; 95% CI, 1.03-1.07, for women with DM and 1.16; 95% CI, 1.07-1.27, for men with DM; HRs for 1-unit increase in FRAX osteoporotic fracture score, 1.04; 95% CI, 1.02-1.05, for women with DM and 1.09; 95% CI, 1.04-1.14, for men with DM). However, for a given T score and age or for a given FRAX score, participants with DM had a higher fracture risk than those without DM. For a similar fracture risk, participants with DM had a higher T score than participants without DM. For hip fracture, the estimated mean difference in T score for women was 0.59 (95% CI, 0.31-0.87) and for men was 0.38 (95% CI, 0.09-0.66). Among older adults with type 2 DM, femoral neck BMD T score and FRAX score were associated with hip and nonspine fracture risk; however, in these patients compared with participants without DM, the fracture risk was higher for a given T score and age or for a given FRAX score.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Bone quality--the material and structural basis of bone strength and fragility.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Trabecular bone score: a noninvasive analytical method based upon the DXA image.

              The trabecular bone score (TBS) is a gray-level textural metric that can be extracted from the two-dimensional lumbar spine dual-energy X-ray absorptiometry (DXA) image. TBS is related to bone microarchitecture and provides skeletal information that is not captured from the standard bone mineral density (BMD) measurement. Based on experimental variograms of the projected DXA image, TBS has the potential to discern differences between DXA scans that show similar BMD measurements. An elevated TBS value correlates with better skeletal microstructure; a low TBS value correlates with weaker skeletal microstructure. Lumbar spine TBS has been evaluated in cross-sectional and longitudinal studies. The following conclusions are based upon publications reviewed in this article: 1) TBS gives lower values in postmenopausal women and in men with previous fragility fractures than their nonfractured counterparts; 2) TBS is complementary to data available by lumbar spine DXA measurements; 3) TBS results are lower in women who have sustained a fragility fracture but in whom DXA does not indicate osteoporosis or even osteopenia; 4) TBS predicts fracture risk as well as lumbar spine BMD measurements in postmenopausal women; 5) efficacious therapies for osteoporosis differ in the extent to which they influence the TBS; 6) TBS is associated with fracture risk in individuals with conditions related to reduced bone mass or bone quality. Based on these data, lumbar spine TBS holds promise as an emerging technology that could well become a valuable clinical tool in the diagnosis of osteoporosis and in fracture risk assessment. © 2014 American Society for Bone and Mineral Research.
                Bookmark

                Author and article information

                Journal
                Current Opinion in Endocrinology & Diabetes and Obesity
                Current Opinion in Endocrinology & Diabetes and Obesity
                Ovid Technologies (Wolters Kluwer Health)
                1752-296X
                2017
                December 2017
                : 24
                : 6
                : 402-410
                Article
                10.1097/MED.0000000000000365
                28857846
                7533863f-1c3a-47ba-bf2a-cc7f6fcc5f6d
                © 2017
                History

                Comments

                Comment on this article