10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Ubiquitous marine bacterium inhibits diatom cell division

      , ,
      The ISME Journal
      Springer Nature

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          genoPlotR: comparative gene and genome visualization in R

          Summary: The amount of gene and genome data obtained by next-generation sequencing technologies generates a need for comparative visualization tools. Complementing existing software for comparison and exploration of genomics data, genoPlotR automatically creates publication-grade linear maps of gene and genomes, in a highly automatic, flexible and reproducible way. Availability: genoPlotR is a platform-independent R package, available with full source code under a GPL2 license at R-Forge: http://genoplotr.r-forge.r-project.org/ Contact: lionel.guy@ebc.uu.se
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Untangling genomes from metagenomes: revealing an uncultured class of marine Euryarchaeota.

            Ecosystems are shaped by complex communities of mostly unculturable microbes. Metagenomes provide a fragmented view of such communities, but the ecosystem functions of major groups of organisms remain mysterious. To better characterize members of these communities, we developed methods to reconstruct genomes directly from mate-paired short-read metagenomes. We closed a genome representing the as-yet uncultured marine group II Euryarchaeota, assembled de novo from 1.7% of a metagenome sequenced from surface seawater. The genome describes a motile, photo-heterotrophic cell focused on degradation of protein and lipids and clarifies the origin of proteorhodopsin. It also demonstrates that high-coverage mate-paired sequence can overcome assembly difficulties caused by interstrain variation in complex microbial communities, enabling inference of ecosystem functions for uncultured members.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome size differentiates co-occurring populations of the planktonic diatom Ditylum brightwellii (Bacillariophyta)

              Background Diatoms are one of the most species-rich groups of eukaryotic microbes known. Diatoms are also the only group of eukaryotic micro-algae with a diplontic life history, suggesting that the ancestral diatom switched to a life history dominated by a duplicated genome. A key mechanism of speciation among diatoms could be a propensity for additional stable genome duplications. Across eukaryotic taxa, genome size is directly correlated to cell size and inversely correlated to physiological rates. Differences in relative genome size, cell size, and acclimated growth rates were analyzed in isolates of the diatom Ditylum brightwellii. Ditylum brightwellii consists of two main populations with identical 18s rDNA sequences; one population is distributed globally at temperate latitudes and the second appears to be localized to the Pacific Northwest coast of the USA. These two populations co-occur within the Puget Sound estuary of WA, USA, although their peak abundances differ depending on local conditions. Results All isolates from the more regionally-localized population (population 2) possessed 1.94 ± 0.74 times the amount of DNA, grew more slowly, and were generally larger than isolates from the more globally distributed population (population 1). The ITS1 sequences, cell sizes, and genome sizes of isolates from New Zealand were the same as population 1 isolates from Puget Sound, but their growth rates were within the range of the slower-growing population 2 isolates. Importantly, the observed genome size difference between isolates from the two populations was stable regardless of time in culture or the changes in cell size that accompany the diatom life history. Conclusions The observed two-fold difference in genome size between the D. brightwellii populations suggests that whole genome duplication occurred within cells of population 1 ultimately giving rise to population 2 cells. The apparent regional localization of population 2 is consistent with a recent divergence between the populations, which are likely cryptic species. Genome size variation is known to occur in other diatom genera; we hypothesize that genome duplication may be an active and important mechanism of genetic and physiological diversification and speciation in diatoms.
                Bookmark

                Author and article information

                Journal
                The ISME Journal
                ISME J
                Springer Nature
                1751-7362
                1751-7370
                September 13 2016
                September 13 2016
                : 11
                : 1
                : 31-42
                Article
                10.1038/ismej.2016.112
                5315476
                27623332
                752bdbee-fa09-4f61-8b7b-a43216e9bef2
                © 2016
                History

                Comments

                Comment on this article