13
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Increased Firearm Injury During the COVID-19 Pandemic: A Hidden Urban Burden

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Public health measures were instituted to reduce COVID-19 spread. A decrease in total emergency department (ED) volume followed, but the impact on injury is unknown. With lockdown and social distancing potentially increasing domicile discord, we hypothesized that intentional injury increased during COVID-19 primarily driven by an increase in penetrating trauma.

          Study Design

          A retrospective review of acute adult patient care in an urban, level 1 trauma center assessed injury patterns. Presenting patient characteristics and diagnoses from 6 weeks pre- to 10 weeks post- a statewide stay-at-home order (SAHO, 3/16/2020) were compared; as well as to 2015- 2019. Subsets were defined by intentionality (intentional vs. non-intentional) and mechanism of injury (MOI, blunt vs. penetrating). Fisher exact and Wilcoxon tests were used to compare proportions and means.

          Results

          357 and 480 trauma patients presented pre- and post-SAHO, respectively. Pre and post groups demonstrated differences in sex (35.6% vs. 27.9% female, p = 0.02), age (47.4 ± 22.1 vs. 42 ± 20.3, p = 0.009), and race (1.4% vs. 2.3% Asian; 63.3% vs. 68.3% Black; 30.5% vs. 22.3% White; 4.8% vs. 7.1% Other; p=0.03). Post-SAHO MOI revealed more intentional injury (p=0.0008). Decreases in non-intentional trauma after adoption of social isolation paralleled declines in daily ED visits. Compared to prior years, 2020 demonstrated a significantly greater proportion of intentional violent injury during the peri-pandemic months, especially from firearms.

          Conclusions

          Unprecedented social isolation policies to address COVID-19 were associated with increased intentional injury, especially gun violence. Meanwhile, ED and non-intentional trauma visits decreased. Pandemic-related public health measures should embrace intentional injury prevention and management strategies.

          Graphical abstract

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Coronavirus Disease 2019 Case Surveillance — United States, January 22–May 30, 2020

          The coronavirus disease 2019 (COVID-19) pandemic resulted in 5,817,385 reported cases and 362,705 deaths worldwide through May, 30, 2020, † including 1,761,503 aggregated reported cases and 103,700 deaths in the United States. § Previous analyses during February–early April 2020 indicated that age ≥65 years and underlying health conditions were associated with a higher risk for severe outcomes, which were less common among children aged 10% of persons in this age group. TABLE 2 Reported underlying health conditions* and symptoms † among persons with laboratory-confirmed COVID-19, by sex and age group — United States, January 22–May 30, 2020 Characteristic No. (%) Total Sex Age group (yrs) Male Female ≤9 10–19 20–29 30–39 40–49 50–59 60–69 70–79 ≥80 Total population 1,320,488 646,358 674,130 20,458 49,245 182,469 214,849 219,139 235,774 179,007 105,252 114,295 Underlying health condition§ Known underlying medical condition status* 287,320 (21.8) 138,887 (21.5) 148,433 (22.0) 2,896 (14.2) 7,123 (14.5) 27,436 (15.0) 33,483 (15.6) 40,572 (18.5) 54,717 (23.2) 50,125 (28.0) 34,400 (32.7) 36,568 (32.0) Any cardiovascular disease¶ 92,546 (32.2) 47,567 (34.2) 44,979 (30.3) 78 (2.7) 164 (2.3) 1,177 (4.3) 3,588 (10.7) 8,198 (20.2) 16,954 (31.0) 21,466 (42.8) 18,763 (54.5) 22,158 (60.6) Any chronic lung disease 50,148 (17.5) 20,930 (15.1) 29,218 (19.7) 363 (12.5) 1,285 (18) 4,537 (16.5) 5,110 (15.3) 6,127 (15.1) 8,722 (15.9) 9,200 (18.4) 7,436 (21.6) 7,368 (20.1) Renal disease 21,908 (7.6) 12,144 (8.7) 9,764 (6.6) 21 (0.7) 34 (0.5) 204 (0.7) 587 (1.8) 1,273 (3.1) 2,789 (5.1) 4,764 (9.5) 5,401 (15.7) 6,835 (18.7) Diabetes 86,737 (30.2) 45,089 (32.5) 41,648 (28.1) 12 (0.4) 225 (3.2) 1,409 (5.1) 4,106 (12.3) 9,636 (23.8) 19,589 (35.8) 22,314 (44.5) 16,594 (48.2) 12,852 (35.1) Liver disease 3,953 (1.4) 2,439 (1.8) 1,514 (1.0) 5 (0.2) 19 (0.3) 132 (0.5) 390 (1.2) 573 (1.4) 878 (1.6) 1,074 (2.1) 583 (1.7) 299 (0.8) Immunocompromised 15,265 (5.3) 7,345 (5.3) 7,920 (5.3) 61 (2.1) 146 (2.0) 646 (2.4) 1,253 (3.7) 2,005 (4.9) 3,190 (5.8) 3,421 (6.8) 2,486 (7.2) 2,057 (5.6) Neurologic/Neurodevelopmental disability 13,665 (4.8) 6,193 (4.5) 7,472 (5.0) 41 (1.4) 113 (1.6) 395 (1.4) 533 (1.6) 734 (1.8) 1,338 (2.4) 2,006 (4.0) 2,759 (8.0) 5,746 (15.7) Symptom§ Known symptom status† 373,883 (28.3) 178,223 (27.6) 195,660 (29.0) 5,188 (25.4) 12,689 (25.8) 51,464 (28.2) 59,951 (27.9) 62,643 (28.6) 70,040 (29.7) 52,178 (29.1) 28,583 (27.2) 31,147 (27.3) Fever, cough, or shortness of breath 260,706 (69.7) 125,768 (70.6) 134,938 (69.0) 3,278 (63.2) 7,584 (59.8) 35,072 (68.1) 42,016 (70.1) 45,361 (72.4) 51,283 (73.2) 37,701 (72.3) 19,583 (68.5) 18,828 (60.4) Fever †† 161,071 (43.1) 80,578 (45.2) 80,493 (41.1) 2,404 (46.3) 4,443 (35.0) 20,381 (39.6) 25,887 (43.2) 28,407 (45.3) 32,375 (46.2) 23,591 (45.2) 12,190 (42.6) 11,393 (36.6) Cough 187,953 (50.3) 89,178 (50.0) 98,775 (50.5) 1,912 (36.9) 5,257 (41.4) 26,284 (51.1) 31,313 (52.2) 34,031 (54.3) 38,305 (54.7) 27,150 (52.0) 12,837 (44.9) 10,864 (34.9) Shortness of breath 106,387 (28.5) 49,834 (28.0) 56,553 (28.9) 339 (6.5) 2,070 (16.3) 13,649 (26.5) 16,851 (28.1) 18,978 (30.3) 21,327 (30.4) 16,018 (30.7) 8,971 (31.4) 8,184 (26.3) Myalgia 135,026 (36.1) 61,922 (34.7) 73,104 (37.4) 537 (10.4) 3,737 (29.5) 21,153 (41.1) 26,464 (44.1) 28,064 (44.8) 28,594 (40.8) 17,360 (33.3) 6,015 (21.0) 3,102 (10.0) Runny nose 22,710 (6.1) 9,900 (5.6) 12,810 (6.5) 354 (6.8) 1,025 (8.1) 4,591 (8.9) 4,406 (7.3) 4,141 (6.6) 4,100 (5.9) 2,671 (5.1) 923 (3.2) 499 (1.6) Sore throat 74,840 (20.0) 31,244 (17.5) 43,596 (22.3) 664 (12.8) 3,628 (28.6) 14,493 (28.2) 14,855 (24.8) 14,490 (23.1) 13,930 (19.9) 8,192 (15.7) 2,867 (10.0) 1,721 (5.5) Headache 128,560 (34.4) 54,721 (30.7) 73,839 (37.7) 785 (15.1) 5,315 (41.9) 23,723 (46.1) 26,142 (43.6) 26,245 (41.9) 26,057 (37.2) 14,735 (28.2) 4,163 (14.6) 1,395 (4.5) Nausea/Vomiting 42,813 (11.5) 16,549 (9.3) 26,264 (13.4) 506 (9.8) 1,314 (10.4) 6,648 (12.9) 7,661 (12.8) 8,091 (12.9) 8,737 (12.5) 5,953 (11.4) 2,380 (8.3) 1,523 (4.9) Abdominal pain 28,443 (7.6) 11,553 (6.5) 16,890 (8.6) 349 (6.7) 978 (7.7) 4,211 (8.2) 5,150 (8.6) 5,531 (8.8) 6,134 (8.8) 3,809 (7.3) 1,449 (5.1) 832 (2.7) Diarrhea 72,039 (19.3) 32,093 (18.0) 39,946 (20.4) 704 (13.6) 1,712 (13.5) 9,867 (19.2) 12,769 (21.3) 13,958 (22.3) 15,536 (22.2) 10,349 (19.8) 4,402 (15.4) 2,742 (8.8) Loss of smell or taste 31,191 (8.3) 12,717 (7.1) 18,474 (9.4) 67 (1.3) 1,257 (9.9) 6,828 (13.3) 6,907 (11.5) 6,361 (10.2) 5,828 (8.3) 2,930 (5.6) 775 (2.7) 238 (0.8) Abbreviation: COVID-19 = coronavirus disease 2019. * Status of underlying health conditions known for 287,320 persons. Status was classified as “known” if any of the following conditions were reported as present or absent: diabetes mellitus, cardiovascular disease (including hypertension), severe obesity (body mass index ≥40 kg/m2), chronic renal disease, chronic liver disease, chronic lung disease, immunocompromising condition, autoimmune condition, neurologic condition (including neurodevelopmental, intellectual, physical, visual, or hearing impairment), psychologic/psychiatric condition, and other underlying medical condition not otherwise specified. † Symptom status was known for 373,883 persons. Status was classified as “known” if any of the following symptoms were reported as present or absent: fever (measured >100.4°F [38°C] or subjective), cough, shortness of breath, wheezing, difficulty breathing, chills, rigors, myalgia, rhinorrhea, sore throat, chest pain, nausea or vomiting, abdominal pain, headache, fatigue, diarrhea (≥3 loose stools in a 24-hour period), or other symptom not otherwise specified on the form. § Responses include data from standardized fields supplemented with data from free-text fields. Information for persons with loss of smell or taste was exclusively extracted from a free-text field; therefore, persons exhibiting this symptom were likely underreported. ¶ Includes persons with reported hypertension. ** Includes all persons with at least one of these symptoms reported. †† Persons were considered to have a fever if information on either measured or subjective fever variables if “yes” was reported for either variable. Among 287,320 (22%) cases with data on individual underlying health conditions, those most frequently reported were cardiovascular disease (32%), diabetes (30%), and chronic lung disease (18%) (Table 2); the reported proportions were similar among males and females. The frequency of conditions reported varied by age group: cardiovascular disease was uncommon among those aged ≤39 years but was reported in approximately half of the cases among persons aged ≥70 years. Among 63,896 females aged 15–44 years with known pregnancy status, 6,708 (11%) were reported to be pregnant. Among the 1,320,488 cases, outcomes for hospitalization, ICU admission, and death were available for 46%, 14%, and 36%, respectively. Overall, 184,673 (14%) patients were hospitalized, including 29,837 (2%) admitted to the ICU; 71,116 (5%) patients died (Table 3). Severe outcomes were more commonly reported for patients with reported underlying conditions. Hospitalizations were six times higher among patients with a reported underlying condition than those without reported underlying conditions (45.4% versus 7.6%). Deaths were 12 times higher among patients with reported underlying conditions compared with those without reported underlying conditions (19.5% versus 1.6%). The percentages of males who were hospitalized (16%), admitted to the ICU (3%), and who died (6%) were higher than were those for females (12%, 2%, and 5%, respectively). The percentage of ICU admissions was highest among persons with reported underlying conditions aged 60–69 years (11%) and 70–79 years (12%). Death was most commonly reported among persons aged ≥80 years regardless of the presence of underlying conditions (with underlying conditions 50%; without 30%). TABLE 3 Reported hospitalizations,* , † intensive care unit (ICU) admissions, § and deaths ¶ among laboratory-confirmed COVID-19 patients with and without reported underlying health conditions, ** by sex and age — United States, January 22–May 30, 2020 Characteristic (no.) Outcome, no./total no. (%)†† Reported hospitalizations*,† (including ICU) Reported ICU admission§ Reported deaths¶ Among all patients Among patients with reported underlying health conditions Among patients with no reported underlying health conditions Among all patients Among patients with reported underlying health conditions Among patients with no reported underlying health conditions Among all patients Among patients with reported underlying health conditions Among patients with no reported underlying health conditions Sex Male (646,358) 101,133/646,358 (15.6) 49,503/96,839 (51.1) 3,596/42,048 (8.6) 18,394/646,358 (2.8) 10,302/96,839 (10.6) 864/42,048 (2.1) 38,773/646,358 (6.0) 21,667/96,839 (22.4) 724/42,048 (1.7) Female (674,130) 83,540/674,130 (12.4) 40,698/102,040 (39.9) 3,087/46,393 (6.7) 11,443/674,130 (1.7) 6,672/102,040 (6.5) 479/46,393 (1.0) 32,343/674,130 (4.8) 17,145/102,040 (16.8) 707/46,393 (1.5) Age group (yrs) ≤9 (20,458) 848/20,458 (4.1) 138/619 (22.3) 84/2,277 (3.7) 141/20,458 (0.7) 31/619 (5.0) 16/2,277 (0.7) 13/20,458 (0.1) 4/619 (0.6) 2/2,277 (0.1) 10–19 (49,245) 1,234/49,245 (2.5) 309/2,076 (14.9) 115/5,047 (2.3) 216/49,245 (0.4) 72/2,076 (3.5) 17/5,047 (0.3) 33/49,245 (0.1) 16/2,076 (0.8) 4/5,047 (0.1) 20–29 (182,469) 6,704/182,469 (3.7) 1,559/8,906 (17.5) 498/18,530 (2.7) 864/182,469 (0.5) 300/8,906 (3.4) 56/18,530 (0.3) 273/182,469 (0.1) 122/8,906 (1.4) 24/18,530 (0.1) 30–39 (214,849) 12,570/214,849 (5.9) 3,596/14,854 (24.2) 828/18,629 (4.4) 1,879/214,849 (0.9) 787/14,854 (5.3) 135/18,629 (0.7) 852/214,849 (0.4) 411/14,854 (2.8) 21/18,629 (0.1) 40–49 (219,139) 19,318/219,139 (8.8) 7,151/24,161 (29.6) 1,057/16,411 (6.4) 3,316/219,139 (1.5) 1,540/24,161 (6.4) 208/16,411 (1.3) 2,083/219,139 (1.0) 1,077/24,161 (4.5) 58/16,411 (0.4) 50–59 (235,774) 31,588/235,774 (13.4) 14,639/40,297 (36.3) 1,380/14,420 (9.6) 5,986/235,774 (2.5) 3,335/40,297 (8.3) 296/14,420 (2.1) 5,639/235,774 (2.4) 3,158/40,297 (7.8) 131/14,420 (0.9) 60–69 (179,007) 39,422/179,007 (22.0) 21,064/42,206 (49.9) 1,216/7,919 (15.4) 7,403/179,007 (4.1) 4,588/42,206 (10.9) 291/7,919 (3.7) 11,947/179,007 (6.7) 7,050/42,206 (16.7) 187/7,919 (2.4) 70–79 (105,252) 35,844/105,252 (34.1) 20,451/31,601 (64.7) 780/2,799 (27.9) 5,939/105,252 (5.6) 3,771/31,601 (11.9) 199/2,799 (7.1) 17,510/105,252 (16.6) 10,008/31,601 (31.7) 286/2,799 (10.2) ≥80 (114,295) 37,145/114,295 (32.5) 21,294/34,159 (62.3) 725/2,409 (30.1) 4,093/114,295 (3.6) 2,550/34,159 (7.5) 125/2,409 (5.2) 32,766/114,295 (28.7) 16,966/34,159 (49.7) 718/2,409 (29.8) Total (1,320,488) 184,673/1,320,488 (14.0) 90,201/198,879 (45.4) 6,683/88,441 (7.6) 29,837/1,320,488 (2.3) 16,974/198,879 (8.5) 1,343/88,441 (1.5) 71,116/1,320,488 (5.4) 38,812/198,879 (19.5) 1,431/88,441 (1.6) Abbreviation: COVID-19 = coronavirus disease 2019. * Hospitalization status was known for 600,860 (46%). Among 184,673 hospitalized patients, the presence of underlying health conditions was known for 96,884 (53%). † Includes reported ICU admissions. § ICU admission status was known for 186,563 (14%) patients among the total case population, representing 34% of hospitalized patients. Among 29,837 patients admitted to the ICU, the status of underlying health conditions was known for 18,317 (61%). ¶ Death outcomes were known for 480,565 (36%) patients. Among 71,116 reported deaths through case surveillance, the status of underlying health conditions was known for 40,243 (57%) patients. ** Status of underlying health conditions was known for 287,320 (22%) patients. Status was classified as “known” if any of the following conditions were noted as present or absent: diabetes mellitus, cardiovascular disease including hypertension, severe obesity body mass index ≥40 kg/m2, chronic renal disease, chronic liver disease, chronic lung disease, any immunocompromising condition, any autoimmune condition, any neurologic condition including neurodevelopmental, intellectual, physical, visual, or hearing impairment, any psychologic/psychiatric condition, and any other underlying medical condition not otherwise specified. †† Outcomes were calculated as the proportion of persons reported to be hospitalized, admitted to an ICU, or who died among total in the demographic group. Outcome underreporting could result from outcomes that occurred but were not reported through national case surveillance or through clinical progression to severe outcomes that occurred after time of report. Discussion As of May 30, a total of 1,761,503 aggregate U.S. cases of COVID-19 and 103,700 associated deaths were reported to CDC. Although average daily reported cases and deaths are declining, 7-day moving averages of daily incidence of COVID-19 cases indicate ongoing community transmission. ¶¶¶¶ The COVID-19 case data summarized here are essential statistics for the pandemic response and rely on information systems developed at the local, state, and federal level over decades for communicable disease surveillance that were rapidly adapted to meet an enormous, new public health threat. CDC aggregate counts are consistent with those presented through the Johns Hopkins University (JHU) Coronavirus Resource Center, which reported a cumulative total of 1,770,165 U.S. cases and 103,776 U.S. deaths on May 30, 2020.***** Differences in aggregate counts between CDC and JHU might be attributable to differences in reporting practices to CDC and jurisdictional websites accessed by JHU. Reported cumulative incidence in the case surveillance population among persons aged ≥20 years is notably higher than that among younger persons. The lower incidence in persons aged ≤19 years could be attributable to undiagnosed milder or asymptomatic illnesses among this age group that were not reported. Incidence in persons aged ≥80 years was nearly double that in persons aged 70–79 years. Among cases with known race and ethnicity, 33% of persons were Hispanic, 22% were black, and 1.3% were AI/AN. These findings suggest that persons in these groups, who account for 18%, 13%, and 0.7% of the U.S. population, respectively, are disproportionately affected by the COVID-19 pandemic. The proportion of missing race and ethnicity data limits the conclusions that can be drawn from descriptive analyses; however, these findings are consistent with an analysis of COVID-19–Associated Hospitalization Surveillance Network (COVID-NET) ††††† data that found higher proportions of black and Hispanic persons among hospitalized COVID-19 patients than were in the overall population ( 4 ). The completeness of race and ethnicity variables in case surveillance has increased from 20% to >40% from April 2 to June 2. Although reporting of race and ethnicity continues to improve, more complete data might be available in aggregate on jurisdictional websites or through sources like the COVID Tracking Project’s COVID Racial Data Tracker. §§§§§ The data in this report show that the prevalence of reported symptoms varied by age group but was similar among males and females. Fewer than 5% of persons were reported to be asymptomatic when symptom data were submitted. Persons without symptoms might be less likely to be tested for COVID-19 because initial guidance recommended testing of only symptomatic persons and was hospital-based. Guidance on testing has evolved throughout the response. ¶¶¶¶¶ Whereas incidence among males and females was similar overall, severe outcomes were more commonly reported among males. Prevalence of reported severe outcomes increased with age; the percentages of hospitalizations, ICU admissions, and deaths were highest among persons aged ≥70 years, regardless of underlying conditions, and lowest among those aged ≤19 years. Hospitalizations were six times higher and deaths 12 times higher among those with reported underlying conditions compared with those with none reported. These findings are consistent with previous reports that found that severe outcomes increased with age and underlying condition, and males were hospitalized at a higher rate than were females ( 2 , 4 , 5 ). The findings in this report are subject to at least three limitations. First, case surveillance data represent a subset of the total cases of COVID-19 in the United States; not every case in the community is captured through testing and information collected might be limited if persons are unavailable or unwilling to participate in case investigations or if medical records are unavailable for data extraction. Reported cumulative incidence, although comparable across age and sex groups within the case surveillance population, are underestimates of the U.S. cumulative incidence of COVID-19. Second, reported frequencies of individual symptoms and underlying health conditions presented from case surveillance likely underestimate the true prevalence because of missing data. Finally, asymptomatic cases are not captured well in case surveillance. Asymptomatic persons are unlikely to seek testing unless they are identified through active screening (e.g., contact tracing), and, because of limitations in testing capacity and in accordance with guidance, investigation of symptomatic persons is prioritized. Increased identification and reporting of asymptomatic cases could affect patterns described in this report. Similar to earlier reports on COVID-19 case surveillance, severe outcomes were more commonly reported among persons who were older and those with underlying health conditions ( 1 ). Findings in this report align with demographic and severe outcome trends identified through COVID-NET ( 4 ). Findings from case surveillance are evaluated along with enhanced surveillance data and serologic survey results to provide a comprehensive picture of COVID-19 trends, and differences in proportion of cases by racial and ethnic groups should continue to be examined in enhanced surveillance to better understand populations at highest risk. Since the U.S. COVID-19 response began in January, CDC has built on existing surveillance capacity to monitor the impact of illness nationally. Collection of detailed case data is a resource-intensive public health activity, regardless of disease incidence. The high incidence of COVID-19 has highlighted limitations of traditional public health case surveillance approaches to provide real-time intelligence and supports the need for continued innovation and modernization. Despite limitations, national case surveillance of COVID-19 serves a critical role in the U.S. COVID-19 response: these data demonstrate that the COVID-19 pandemic is an ongoing public health crisis in the United States that continues to affect all populations and result in severe outcomes including death. National case surveillance findings provide important information for targeted enhanced surveillance efforts and development of interventions critical to the U.S. COVID-19 response. Summary What is already known about this topic? Surveillance data reported to CDC through April 2020 indicated that COVID-19 leads to severe outcomes in older adults and those with underlying health conditions. What is added by this report? As of May 30, 2020, among COVID-19 cases, the most common underlying health conditions were cardiovascular disease (32%), diabetes (30%), and chronic lung disease (18%). Hospitalizations were six times higher and deaths 12 times higher among those with reported underlying conditions compared with those with none reported. What are the implications for public health practice? Surveillance at all levels of government, and its continued modernization, is critical for monitoring COVID-19 trends and identifying groups at risk for infection and severe outcomes. These findings highlight the continued need for community mitigation strategies, especially for vulnerable populations, to slow COVID-19 transmission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Impact of the COVID-19 Pandemic on Emergency Department Visits — United States, January 1, 2019–May 30, 2020

            On March 13, 2020, the United States declared a national emergency to combat coronavirus disease 2019 (COVID-19). As the number of persons hospitalized with COVID-19 increased, early reports from Austria ( 1 ), Hong Kong ( 2 ), Italy ( 3 ), and California ( 4 ) suggested sharp drops in the numbers of persons seeking emergency medical care for other reasons. To quantify the effect of COVID-19 on U.S. emergency department (ED) visits, CDC compared the volume of ED visits during four weeks early in the pandemic March 29–April 25, 2020 (weeks 14 to 17; the early pandemic period) to that during March 31–April 27, 2019 (the comparison period). During the early pandemic period, the total number of U.S. ED visits was 42% lower than during the same period a year earlier, with the largest declines in visits in persons aged ≤14 years, females, and the Northeast region. Health messages that reinforce the importance of immediately seeking care for symptoms of serious conditions, such as myocardial infarction, are needed. To minimize SARS-CoV-2, the virus that causes COVID-19, transmission risk and address public concerns about visiting the ED during the pandemic, CDC recommends continued use of virtual visits and triage help lines and adherence to CDC infection control guidance. To assess trends in ED visits during the pandemic, CDC analyzed data from the National Syndromic Surveillance Program (NSSP), a collaborative network developed and maintained by CDC, state and local health departments, and academic and private sector health partners to collect electronic health data in real time. The national data in NSSP includes ED visits from a subset of hospitals in 47 states (all but Hawaii, South Dakota, and Wyoming), capturing approximately 73% of ED visits in the United States able to be analyzed at the national level. During the most recent week, 3,552 EDs reported data. Total ED visit volume, as well as patient age, sex, region, and reason for visit were analyzed. Weekly number of ED visits were examined during January 1, 2019–May 30, 2020. In addition, ED visits during two 4-week periods were compared using mean differences and ratios. The change in mean visits per week during the early pandemic period and the comparison period was calculated as the mean difference in total visits in a diagnostic category between the two periods, divided by 4 weeks ([visits in diagnostic category {early pandemic period} – visits in diagnostic category {comparison period}]/4). The visit prevalence ratio (PR) was calculated for each diagnostic category as the proportion of ED visits during the early pandemic period divided by the proportion of visits during the comparison period ([visits in category {early pandemic period}/all visits {early pandemic period}]/[visits in category {comparison period}/all visits {comparison period}]). All analyses were conducted using R software (version 3.6.0; R Foundation). Reason for visit was analyzed using a subset of records that had at least one specific, billable International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) code. In addition to Hawaii, South Dakota, and Wyoming, four states (Florida, Louisiana, New York outside New York City, and Oklahoma), two California counties reporting to the NSSP (Santa Cruz and Solano), and the District of Columbia were also excluded from the diagnostic code analysis because they did not report diagnostic codes during both periods or had differences in completeness of codes between 2019 and 2020. Among eligible visits for the diagnostic code analysis, 20.3% without a valid ICD-10-CM code were excluded. ED visits were categorized using the Clinical Classifications Software Refined tool (version 2020.2; Healthcare Cost and Utilization Project), which combines ICD-10-CM codes into clinically meaningful groups ( 5 ). A visit with multiple ICD-10-CM codes could be included in multiple categories; for example, a visit by a patient with diabetes and hypertension would be included in the category for diabetes and the category for hypertension. Because COVID-19 is not yet classified in this tool, a custom category, defined as any visit with the ICD-10-CM code for confirmed COVID-19 diagnosis (U07.1), was created ( 6 ). The analysis was limited to the top 200 diagnostic categories during each period. The lowest number of visits reported to NSSP occurred during April 12–18, 2020 (week 16). Although visits have increased since the nadir, the most recent complete week (May 24–30, week 22) remained 26% below the corresponding week in 2019 (Figure 1). The number of ED visits decreased 42%, from a mean of 2,099,734 per week during March 31–April 27, 2019, to a mean of 1,220,211 per week during the early pandemic period of March 29–April 25, 2020. Visits declined for every age group (Figure 2), with the largest proportional declines in visits by children aged ≤10 years (72%) and 11–14 years (71%). Declines in ED visits varied by U.S. Department of Health and Human Services region,* with the largest declines in the Northeast (Region 1, 49%) and in the region that includes New Jersey and New York (Region 2, 48%) (Figure 2). Visits declined 37% among males and 45% among females across all NSSP EDs between the comparison and early pandemic periods. FIGURE 1 Weekly number of emergency department (ED) visits — National Syndromic Surveillance Program, United States,* January 1, 2019– May 30, 2020† * Hawaii, South Dakota, and Wyoming are not included. † Vertical lines indicate the beginning and end of the 4-week coronavirus disease 2019 (COVID-19) early pandemic period (March 29–April 25, 2020) and the comparison period (March 31–April 27, 2019). The figure is a line graph showing the weekly number of emergency department visits, using data from the National Syndromic Surveillance Program, in the United States, during January 1, 2019–May 30, 2020. FIGURE 2 Emergency department (ED) visits, by age group (A) and U.S. Department of Health and Human Services (HHS) region* (B) — National Syndromic Surveillance Program, United States,† March 31–April 27, 2019 (comparison period) and March 29–April 25, 2020 (early pandemic period) * Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont; Region 2: New Jersey and New York; Region 3: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, and West Virginia; Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee; Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin; Region 6: Arkansas, Louisiana, New Mexico, Oklahoma, and Texas; Region 7: Iowa, Kansas, Missouri, and Nebraska; Region 8: Colorado, Montana, North Dakota, and Utah; Region 9: Arizona, California, and Nevada; Region 10: Alaska, Idaho, Oregon, and Washington. † Hawaii, South Dakota, and Wyoming are not included. The figure is a bar chart showing the emergency department visits, by age group and U.S. Department of Health and Human Services region, using data from the National Syndromic Surveillance Program, in the United States, during March 31–April 27, 2019 (comparison period) and March 29–April 25, 2020 (pandemic period). Among all ages, an increase of >100 mean visits per week from the comparison period to the early pandemic period occurred in eight of the top 200 diagnostic categories (Table). These included 1) exposure, encounters, screening, or contact with infectious disease (mean increase 18,834 visits per week); 2) COVID-19 (17,774); 3) other general signs and symptoms (4,532); 4) pneumonia not caused by tuberculosis (3,911); 5) other specified and unspecified lower respiratory disease (1,506); 6) respiratory failure, insufficiency, or arrest (776); 7) cardiac arrest and ventricular fibrillation (472); and 8) socioeconomic or psychosocial factors (354). The largest declines were in visits for abdominal pain and other digestive or abdomen signs and symptoms (–66,456), musculoskeletal pain excluding low back pain (–52,150), essential hypertension (–45,184), nausea and vomiting (–38,536), other specified upper respiratory infections (–36,189), sprains and strains (–33,709), and superficial injuries (–30,918). Visits for nonspecific chest pain were also among the top 20 diagnostic categories for which visits decreased (–24,258). Although not in the top 20 declining diagnoses, visits for acute myocardial infarction also declined (–1,156). TABLE Differences in mean weekly numbers of emergency department (ED) visits* for diagnostic categories with the largest increases or decreases† and prevalence ratios§ comparing the proportion of ED visits in each diagnostic category, for categories with the highest and lowest ratios — National Syndromic Surveillance Program, United States,¶ March 31–April 27, 2019 (comparison period) and March 29–April 25, 2020 (early pandemic period) Diagnostic category Change in mean no. of weekly ED visits* Prevalence ratio (95% CI)§ All categories with higher visit counts during the early pandemic period Exposure, encounters, screening, or contact with infectious disease** 18,834 3.79 (3.76–3.83) COVID-19 17,774 — Other general signs and symptoms** 4,532 1.87 (1.86–1.89) Pneumonia (except that caused by tuberculosis)** 3,911 1.91 (1.90–1.93) Other specified and unspecified lower respiratory disease** 1,506 1.99 (1.96–2.02) Respiratory failure, insufficiency, arrest** 776 1.76 (1.74–1.78) Cardiac arrest and ventricular fibrillation** 472 1.98 (1.93–2.03) Socioeconomic or psychosocial factors** 354 1.78 (1.75–1.81) Other top 10 highest prevalence ratios Mental and substance use disorders, in remission** 6 1.69 (1.64–1.75) Other specified encounters and counseling** 22 1.69 (1.67–1.72) Stimulant-related disorders** −189 1.65 (1.62–1.67) Top 20 categories with lower visit counts during the early pandemic period Abdominal pain and other digestive or abdomen signs and symptoms −66,456 0.93 (0.93–0.93) Musculoskeletal pain, not low back pain −52,150 0.81 (0.81–0.82) Essential hypertension −45,184 1.11 (1.10–1.11) Nausea and vomiting −38,536 0.85 (0.84–0.85) Other specified upper respiratory infections −36,189 0.82 (0.81–0.82) Sprains and strains, initial encounter †† −33,709 0.61 (0.61–0.62) Superficial injury; contusion, initial encounter −30,918 0.85 (0.84–0.85) Personal or family history of disease −28,734 1.21 (1.20–1.22) Headache, including migraine −27,458 0.85 (0.84–0.85) Other unspecified injury −25,974 0.84 (0.83–0.84) Nonspecific chest pain −24,258 1.20 (1.20–1.21) Tobacco-related disorders −23,657 1.19 (1.18–1.19) Urinary tract infections −23,346 1.02 (1.02–1.03) Asthma −20,660 0.91 (0.90–0.91) Disorders of lipid metabolism −20,145 1.12 (1.11–1.13) Spondylopathies/Spondyloarthropathy (including infective) −19,441 0.78 (0.77–0.79) Otitis media †† −17,852 0.35 (0.34–0.36) Diabetes mellitus without complication −15,893 1.10 (1.10–1.11) Skin and subcutaneous tissue infections −15,598 1.01 (1.00–1.02) Chronic obstructive pulmonary disease and bronchiectasis −15,520 1.05 (1.04–1.06) Other top 10 lowest prevalence ratios Influenza †† −12,094 0.16 (0.15–0.16) No immunization or underimmunization †† −1,895 0.28 (0.27–0.30) Neoplasm-related encounters †† −1,926 0.40 (0.39–0.42) Intestinal infection †† −5,310 0.52 (0.51–0.54) Cornea and external disease †† −9,096 0.54 (0.53–0.55) Sinusitis †† −7,283 0.55 (0.54–0.56) Acute bronchitis †† −15,470 0.59 (0.58–0.60) Noninfectious gastroenteritis †† −11,572 0.63 (0.62–0.64) Abbreviations: CI = confidence interval; COVID-19 = coronavirus disease 2019. * The change in visits per week during the early pandemic and comparison periods was calculated as the difference in total visits between the two periods, divided by 4 weeks ([visits in diagnostic category, {early pandemic period} – visits in diagnostic category, {comparison period}] / 4). † Analysis is limited to the 200 most common diagnostic categories. All eight diagnostic categories with an increase of >100 in the mean number of visits nationwide in the early pandemic period are shown. The top 20 categories with decreasing visit counts are shown. § Ratio calculated as the proportion of all ED visits in each diagnostic category during the early pandemic period, divided by the proportion of all ED visits in that category during the comparison period ([visits in category {early pandemic period}/all visits {early pandemic period})/(visits in category {comparison period}/all visits {comparison period}]). Ratios >1 indicate a higher proportion of visits in that category during the early pandemic period than the comparison period; ratios <1 indicate a lower proportion during the early pandemic than during the comparison period. Analysis is limited to the 200 most common diagnostic categories. The 10 categories with the highest and lowest ratios are shown. ¶ Florida, Hawaii, Louisiana, New York outside of New York City, Oklahoma, South Dakota, Wyoming, Santa Cruz and Solano counties in California, and the District of Columbia are not included. ** Top 10 highest prevalence ratios; higher proportion of visits in the early pandemic period than the comparison period. †† Top 10 lowest prevalence ratios; lower proportion of visits in the early pandemic period than the comparison period. During the early pandemic period, the proportion of ED visits for exposure, encounters, screening, or contact with infectious disease compared with total visits was nearly four times as large as during the comparison period (Table) (prevalence ratio [PR] = 3.79, 95% confidence interval [CI] = 3.76–3.83). The other diagnostic categories with the highest proportions of visits during the early pandemic compared with the comparison period were other specified and unspecified lower respiratory disease, which did not include influenza, pneumonia, asthma, or bronchitis (PR = 1.99; 95% CI = 1.96–2.02), cardiac arrest and ventricular fibrillation (PR = 1.98; 95% CI = 1.93–2.03), and pneumonia not caused by tuberculosis (PR = 1.91; 95% CI = 1.90–1.93). Diagnostic categories that were recorded less commonly during the early pandemic period included influenza (PR = 0.16; 95% CI = 0.15–0.16), no immunization or underimmunization (PR = 0.28; 95% CI = 0.27–0.30), otitis media (PR = 0.35; 95% CI = 0.34–0.36), and neoplasm-related encounters (PR = 0.40; 95% CI = 0.39–0.42). In the 2019 comparison period, 12% of all ED visits were in children aged ≤10 years old, compared with 6% during the early pandemic period. Among children aged ≤10 years, the largest declines were in visits for influenza (97% decrease), otitis media (85%), other specified upper respiratory conditions (84%), nausea and vomiting (84%), asthma (84%), viral infection (79%), respiratory signs and symptoms (78%), abdominal pain and other digestive or abdomen symptoms (78%), and fever (72%). Mean weekly visits with confirmed COVID-19 diagnoses and screening for infectious disease during the early pandemic period were lower among children than among adults. Among all ages, the diagnostic categories with the largest changes (abdominal pain and other digestive or abdomen signs and symptoms, musculoskeletal pain, and essential hypertension) were the same in males and females, but declines in those categories were larger in females than males. Females also had large declines in visits for urinary tract infections (–19,833 mean weekly visits). Discussion During an early 4-week interval in the COVID-19 pandemic, ED visits were substantially lower than during the same 4-week period during the previous year; these decreases were especially pronounced for children and females and in the Northeast. In addition to diagnoses associated with lower respiratory disease, pneumonia, and difficulty breathing, the number and ratio of visits (early pandemic period versus comparison period) for cardiac arrest and ventricular fibrillation increased. The number of visits for conditions including nonspecific chest pain and acute myocardial infarction decreased, suggesting that some persons could be delaying care for conditions that might result in additional mortality if left untreated. Some declines were in categories including otitis media, superficial injuries, and sprains and strains that can often be managed through primary or urgent care. Future analyses will help clarify the proportion of the decline in ED visits that were not preventable or avoidable such as those for life-threatening conditions, those that were manageable through primary care, and those that represented actual reductions in injuries or illness attributable to changing activity patterns during the pandemic (such as lower risks for occupational and motor vehicle injuries or other infectious diseases). The striking decline in ED visits nationwide, with the highest declines in regions where the pandemic was most severe in April 2020, suggests that the pandemic has altered the use of the ED by the public. Persons who use the ED as a safety net because they lack access to primary care and telemedicine might be disproportionately affected if they avoid seeking care because of concerns about the infection risk in the ED. Syndromic surveillance has important strengths, including automated electronic reporting and the ability to track outbreaks in real time ( 7 ). Among all visits, 74% are reported within 24 hours, with 75% of discharge diagnoses typically added to the record within 1 week. The findings in this report are subject to at least four limitations. First, hospitals reporting to NSSP change over time as facilities are added, and more rarely, as they close ( 8 ). An average of 3,173 hospitals reported to NSSP nationally in April 2019, representing an estimated 66% of U.S. ED visits, and an average of 3,467 reported in April 2020, representing 73% of ED visits. Second, diagnostic categories rely on the use of specific codes, which were missing in 20% of visits and might be used inconsistently across hospitals and providers, which could result in misclassification. The COVID-19 diagnosis code was introduced recently (April 1, 2020) and timing of uptake might have differed across hospitals ( 6 ). Third, NSSP coverage is not uniform across or within all states; in some states nearly all hospitals report, whereas in others, a lower proportion statewide or only those in certain counties report. Finally, because this analysis is limited to ED visit data, the proportion of persons who did not visit EDs but received treatment elsewhere is not captured. Health care systems should continue to address public concern about exposure to SARS-CoV-2 in the ED through adherence to CDC infection control recommendations, such as immediately screening every person for fever and symptoms of COVID-19, and maintaining separate, well-ventilated triage areas for patients with and without signs and symptoms of COVID-19 ( 9 ). Wider access is needed to health messages that reinforce the importance of immediately seeking care for serious conditions for which ED visits cannot be avoided, such as symptoms of myocardial infarction. Expanded access to triage telephone lines that help persons rapidly decide whether they need to go to an ED for symptoms of possible COVID-19 infection and other urgent conditions is also needed. For conditions that do not require immediate care or in-person treatment, health care systems should continue to expand the use of virtual visits during the pandemic ( 10 ). Summary What is already known about this topic? The National Syndromic Surveillance Program (NSSP) collects electronic health data in real time. What is added by this report? NSSP found that emergency department (ED) visits declined 42% during the early COVID-19 pandemic, from a mean of 2.1 million per week (March 31–April 27, 2019) to 1.2 million (March 29–April 25, 2020), with the steepest decreases in persons aged ≤14 years, females, and the Northeast. The proportion of infectious disease–related visits was four times higher during the early pandemic period. What are the implications for public health practice? To minimize SARS-CoV-2 transmission risk and address public concerns about visiting the ED during the pandemic, CDC recommends continued use of virtual visits and triage help lines and adherence to CDC infection control guidance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Global Telemedicine Implementation and Integration Within Health Systems to Fight the COVID-19 Pandemic: A Call to Action

              On March 11, 2020, the World Health Organization declared the coronavirus disease 2019 (COVID-19) outbreak as a pandemic, with over 720,000 cases reported in more than 203 countries as of 31 March. The response strategy included early diagnosis, patient isolation, symptomatic monitoring of contacts as well as suspected and confirmed cases, and public health quarantine. In this context, telemedicine, particularly video consultations, has been promoted and scaled up to reduce the risk of transmission, especially in the United Kingdom and the United States of America. Based on a literature review, the first conceptual framework for telemedicine implementation during outbreaks was published in 2015. An updated framework for telemedicine in the COVID-19 pandemic has been defined. This framework could be applied at a large scale to improve the national public health response. Most countries, however, lack a regulatory framework to authorize, integrate, and reimburse telemedicine services, including in emergency and outbreak situations. In this context, Italy does not include telemedicine in the essential levels of care granted to all citizens within the National Health Service, while France authorized, reimbursed, and actively promoted the use of telemedicine. Several challenges remain for the global use and integration of telemedicine into the public health response to COVID-19 and future outbreaks. All stakeholders are encouraged to address the challenges and collaborate to promote the safe and evidence-based use of telemedicine during the current pandemic and future outbreaks. For countries without integrated telemedicine in their national health care system, the COVID-19 pandemic is a call to adopt the necessary regulatory frameworks for supporting wide adoption of telemedicine.
                Bookmark

                Author and article information

                Journal
                J Am Coll Surg
                J Am Coll Surg
                Journal of the American College of Surgeons
                Published by Elsevier Inc. on behalf of the American College of Surgeons.
                1072-7515
                1879-1190
                6 November 2020
                6 November 2020
                Affiliations
                [1 ]Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
                [2 ]Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
                [3 ]Division of Traumatology, Surgical Critical Care and Emergency Surgery, Department of Surgery, Penn Presbyterian Medical Center, Philadelphia, Pennsylvania
                Author notes
                []Corresponding Author: Jose L. Pascual, MD, PhD, FRCPS(C), FACS Division of Traumatology, Surgical Critical Care and Emergency Surgery Department of Surgery 3400 Spruce Street Philadelphia, Pennsylvania 19104 215 662-7323 Fax: 215 614-0375
                Article
                S1072-7515(20)32413-3
                10.1016/j.jamcollsurg.2020.09.028
                7645281
                33166665
                7523ae1f-19d3-4b45-a548-b6578e13d0c6
                © 2020 Published by Elsevier Inc. on behalf of the American College of Surgeons.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 12 August 2020
                : 19 September 2020
                : 24 September 2020
                Categories
                Original Scientific Article

                trauma,firearms,public health,violence
                trauma, firearms, public health, violence

                Comments

                Comment on this article