5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Glycopeptide‐Based Multifunctional Hydrogels Promote Diabetic Wound Healing through pH Regulation of Microenvironment

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Excessive inflammation, bacterial infection, and blocked angiogenesis make diabetic wound healing challenging. Multifunctional wound dressings have several advantages in diabetic wound healing. In addition, the pH regulation of the microenvironment is shown to be a key factor that promotes skin regeneration through cellular immune regulation. However, few reports have focused on the development of functional dressings with the ability to regulate the pH microenvironment and promote diabetic wound healing. This study presents a novel approach for regulating the pH microenvironment of diabetic wound sites using a glycopeptide‐based hydrogel consisting of modified hyaluronic acid and poly(6‐aminocaproic acid). This hydrogel forms a network through Schiff base interactions and metal complexation, which suppresses inflammation and accelerates angiogenesis during wound healing. Hydrogels not only have adequate mechanical properties and self‐healing ability but can also support tissue adhesion. They can also promote the secretion of inducible cAMP early repressor, which promotes the polarization of macrophages toward the M2 type. The in vivo results confirm that hydrogel promotes diabetic wound repair and skin regeneration by exerting rapid anti‐inflammatory effects and promoting angiogenesis. Therefore, this hydrogel system represents an effective strategy for treating diabetic wounds.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Functional Hydrogels as Wound Dressing to Enhance Wound Healing

          Hydrogels, due to their excellent biochemical and mechnical property, have shown attractive advantages in the field of wound dressings. However, a comprehensive review of the functional hydrogel as a wound dressing is still lacking. This work first summarizes the skin wound healing process and relates evaluation parameters and then reviews the advanced functions of hydrogel dressings such as antimicrobial property, adhesion and hemostasis, anti-inflammatory and anti-oxidation, substance delivery, self-healing, stimulus response, conductivity, and the recently emerged wound monitoring feature, and the strategies adopted to achieve these functions are all classified and discussed. Furthermore, applications of hydrogel wound dressing for the treatment of different types of wounds such as incisional wound and the excisional wound are summarized. Chronic wounds are also mentioned, and the focus of attention on infected wounds, burn wounds, and diabetic wounds is discussed. Finally, the future directions of hydrogel wound dressings for wound healing are further proposed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glucose feeds the TCA cycle via circulating lactate

            Mammalian tissues are fuelled by circulating nutrients, including glucose, amino acids, and various intermediary metabolites. Under aerobic conditions, glucose is generally assumed to be burned fully by tissues via the tricarboxylic acid cycle (TCA cycle) to carbon dioxide. Alternatively, glucose can be catabolized anaerobically via glycolysis to lactate, which is itself also a potential nutrient for tissues and tumours. The quantitative relevance of circulating lactate or other metabolic intermediates as fuels remains unclear. Here we systematically examine the fluxes of circulating metabolites in mice, and find that lactate can be a primary source of carbon for the TCA cycle and thus of energy. Intravenous infusions of 13C-labelled nutrients reveal that, on a molar basis, the circulatory turnover flux of lactate is the highest of all metabolites and exceeds that of glucose by 1.1-fold in fed mice and 2.5-fold in fasting mice; lactate is made primarily from glucose but also from other sources. In both fed and fasted mice, 13C-lactate extensively labels TCA cycle intermediates in all tissues. Quantitative analysis reveals that during the fasted state, the contribution of glucose to tissue TCA metabolism is primarily indirect (via circulating lactate) in all tissues except the brain. In genetically engineered lung and pancreatic cancer tumours in fasted mice, the contribution of circulating lactate to TCA cycle intermediates exceeds that of glucose, with glutamine making a larger contribution than lactate in pancreatic cancer. Thus, glycolysis and the TCA cycle are uncoupled at the level of lactate, which is a primary circulating TCA substrate in most tissues and tumours.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Influence of pH on wound-healing: a new perspective for wound-therapy?

              Wound healing is a complex regeneration process, which is characterised by intercalating degradation and re-assembly of connective tissue and epidermal layer. The pH value within the wound-milieu influences indirectly and directly all biochemical reactions taking place in this process of healing. Interestingly it is so far a neglected parameter for the overall outcome. For more than three decades the common assumption amongst physicians was that a low pH value, such as it is found on normal skin, is favourable for wound healing. However, investigations have shown that in fact some healing processes such as the take-rate of skin-grafts require an alkaline milieu. The matter is thus much more complicated than it was assumed. This review article summarises the existing literature dealing with the topic of pH value within the wound-milieu, its influence on wound healing and critically discusses the currently existing data in this field. The conclusion to be drawn at present is that the wound pH indeed proves to be a potent influential factor for the healing process and that different pH ranges are required for certain distinct phases of wound healing. Further systematic data needs to be collected for a better understanding of the pH requirements under specific circumstances. This is important as it will help to develop new pH targeted therapeutic strategies.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Functional Materials
                Adv Funct Materials
                Wiley
                1616-301X
                1616-3028
                July 2023
                April 23 2023
                July 2023
                : 33
                : 29
                Affiliations
                [1 ] Research Institute for Biomaterials Tech Institute for Advanced Materials College of Materials Science and Engineering Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites Suqian Advanced Materials Industry Technology Innovation Center Nanjing Tech University Nanjing 30 Puzhu Road 211816 Nanjing P. R. China
                [2 ] The Key Laboratory of Bioactive Materials Ministry of Education College of Life Science Nankai University Tianjin 300071 P. R. China
                [3 ] NJTech‐BARTY Joint Research Center for Innovative Medical Technology Nanjing 210000 P. R. China
                Article
                10.1002/adfm.202215116
                75130f28-6c4f-4f65-a950-26ee88b6d3ab
                © 2023

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article