46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MIDER: Network Inference with Mutual Information Distance and Entropy Reduction

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The prediction of links among variables from a given dataset is a task referred to as network inference or reverse engineering. It is an open problem in bioinformatics and systems biology, as well as in other areas of science. Information theory, which uses concepts such as mutual information, provides a rigorous framework for addressing it. While a number of information-theoretic methods are already available, most of them focus on a particular type of problem, introducing assumptions that limit their generality. Furthermore, many of these methods lack a publicly available implementation. Here we present MIDER, a method for inferring network structures with information theoretic concepts. It consists of two steps: first, it provides a representation of the network in which the distance among nodes indicates their statistical closeness. Second, it refines the prediction of the existing links to distinguish between direct and indirect interactions and to assign directionality. The method accepts as input time-series data related to some quantitative features of the network nodes (such as e.g. concentrations, if the nodes are chemical species). It takes into account time delays between variables, and allows choosing among several definitions and normalizations of mutual information. It is general purpose: it may be applied to any type of network, cellular or otherwise. A Matlab implementation including source code and data is freely available ( http://www.iim.csic.es/~gingproc/mider.html). The performance of MIDER has been evaluated on seven different benchmark problems that cover the main types of cellular networks, including metabolic, gene regulatory, and signaling. Comparisons with state of the art information–theoretic methods have demonstrated the competitive performance of MIDER, as well as its versatility. Its use does not demand any a priori knowledge from the user; the default settings and the adaptive nature of the method provide good results for a wide range of problems without requiring tuning.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Gene regulatory network inference: data integration in dynamic models-a review.

          Systems biology aims to develop mathematical models of biological systems by integrating experimental and theoretical techniques. During the last decade, many systems biological approaches that base on genome-wide data have been developed to unravel the complexity of gene regulation. This review deals with the reconstruction of gene regulatory networks (GRNs) from experimental data through computational methods. Standard GRN inference methods primarily use gene expression data derived from microarrays. However, the incorporation of additional information from heterogeneous data sources, e.g. genome sequence and protein-DNA interaction data, clearly supports the network inference process. This review focuses on promising modelling approaches that use such diverse types of molecular biological information. In particular, approaches are discussed that enable the modelling of the dynamics of gene regulatory systems. The review provides an overview of common modelling schemes and learning algorithms and outlines current challenges in GRN modelling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Advantages and limitations of current network inference methods.

            Network inference, which is the reconstruction of biological networks from high-throughput data, can provide valuable information about the regulation of gene expression in cells. However, it is an underdetermined problem, as the number of interactions that can be inferred exceeds the number of independent measurements. Different state-of-the-art tools for network inference use specific assumptions and simplifications to deal with underdetermination, and these influence the inferences. The outcome of network inference therefore varies between tools and can be highly complementary. Here we categorize the available tools according to the strategies that they use to deal with the problem of underdetermination. Such categorization allows an insight into why a certain tool is more appropriate for the specific research question or data set at hand.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ultrasensitivity in the mitogen-activated protein kinase cascade.

              The mitogen-activated protein kinase (MAPK) cascade is a highly conserved series of three protein kinases implicated in diverse biological processes. Here we demonstrate that the cascade arrangement has unexpected consequences for the dynamics of MAPK signaling. We solved the rate equations for the cascade numerically and found that MAPK is predicted to behave like a highly cooperative enzyme, even though it was not assumed that any of the enzymes in the cascade were regulated cooperatively. Measurements of MAPK activation in Xenopus oocyte extracts confirmed this prediction. The stimulus/response curve of the MAPK was found to be as steep as that of a cooperative enzyme with a Hill coefficient of 4-5, well in excess of that of the classical allosteric protein hemoglobin. The shape of the MAPK stimulus/ response curve may make the cascade particularly appropriate for mediating processes like mitogenesis, cell fate induction, and oocyte maturation, where a cell switches from one discrete state to another.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                7 May 2014
                : 9
                : 5
                : e96732
                Affiliations
                [1 ]Bioprocess Engineering Group, IIM-CSIC, Vigo, Spain
                [2 ]Department of Chemistry, Stanford University, Stanford, California, United States of America
                [3 ]Department of Biochemistry and Molecular Biology, Complutense University, Madrid, Spain
                University of Manchester, United Kingdom
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AFV JR FM JRB. Performed the experiments: AFV. Analyzed the data: AFV JRB. Contributed reagents/materials/analysis tools: JR FM. Wrote the paper: AFV JRB.

                Article
                PONE-D-13-46274
                10.1371/journal.pone.0096732
                4013075
                24806471
                74db791a-0300-421d-984d-3e311f3284c4
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 5 November 2013
                : 9 April 2014
                Page count
                Pages: 15
                Funding
                This work was supported by the EU project “BioPreDyn” (European Commission grant FP7-KBBE-2011-5/289434); the Spanish Ministerio de Economia y Competitividad (MINECO) projects DPI2011-28112-C04-03, BFU2009-12895-C02-02, and BFU2012-39816-C02-02; the CSIC intramural project “BioREDES” (PIE-201170E018); and the National Science Foundation grant CHE 0847073. Work in UCM is supported by grant BFU2012-39816-C02-02 from Spanish Ministry of Economy and Competitiveness (MINECO) and Consolider/Ingenio2010 CSD2007-00002 from Spanish MICINN. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Biochemistry
                Biochemical Simulations
                Biotechnology
                Bioengineering
                Biological Systems Engineering
                Biomedical Engineering
                Computational Biology
                Genome Analysis
                Genetic Networks
                Genetics
                Genomics
                Systems Biology
                Computer and Information Sciences
                Information Technology
                Databases
                Information Theory
                Network Analysis
                Metabolic Networks
                Regulatory Networks
                Signaling Networks
                Software Engineering
                Software Tools
                Engineering and Technology
                Physical Sciences
                Mathematics
                Applied Mathematics
                Algorithms
                Social Sciences

                Uncategorized
                Uncategorized

                Comments

                Comment on this article