30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of dietary energy on growth performance, carcass characteristics, serum biochemical index, and meat quality of female Hu lambs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study evaluated the effects of dietary energy levels on growth performance, carcass traits, meat quality, and serum biochemical of female Hu lambs. Seventy female Hu lambs (aged 4 months) were randomly allotted to 5 dietary treatments. Lambs were fed diets with 5 levels of metabolizable energy (ME): 9.17 (E1), 9.59 (E2), 10.00 (E3), 10.41 (E4), and 10.82 MJ/kg (E5). The lambs were adapted to the experimental diets for 10 d and the experiment period lasted for 60 d. Dry matter intake and feed conversion ratio linearly ( P < 0.001) increased and decreased ( P < 0.001), respectively, with increasing dietary ME levels. Average daily gain (ADG) linearly ( P < 0.001) increased with increasing dietary ME levels, with the highest final body weight ( P = 0.041) observed in E4 group. Moreover, dietary energy level was associated with linear increases in serum total protein (TP) ( P < 0.001), albumin (ALB) ( P = 0.017), glucose (GLU) ( P = 0.004), and low-density lipoprotein cholesterol (LDLC) ( P = 0.006) concentrations, and it was associated with a quadratic decrease in serum triglyceride (TG) concentration ( P = 0.002). Serum ammonia concentration, which was firstly decreased and then increased, was quadratically affected by dietary ME levels ( P = 0.013). Compared with E1 group, lambs in E4 group had higher ( P < 0.05) live weights, carcass weights, mesenteric fat ratio, non-carcass fat ratio, and larger loin muscle area, but lower ( P < 0.05) meat colour a∗ and b∗ values, and lesser ( P < 0.05) C17:0, C20:0, C18:1n-9t, C18:3n-3, and n-3 polyunsaturated fatty acids (PUFA), but greater ( P < 0.05) C18:3n-6 and n-6:n-3 ratios in longissimus dorsi (LD) muscle tissue, and lesser ( P < 0.05) C17:0, C18:3n-3, C22:6n-3, and n-3 PUFA in the biceps femoris (BF) muscle tissue. The results demonstrated that increasing dietary energy level improved the growth performance and affected carcass traits, serum biochemical indexes, and fatty acid profiles in different muscles of female Hu lambs. For 4-month-old female Hu lambs, the recommended fattening energy level is 10.41 MJ/kg.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition.

          There is a need to standardize the NDF procedure. Procedures have varied because of the use of different amylases in attempts to remove starch interference. The original Bacillus subtilis enzyme Type IIIA (XIA) no longer is available and has been replaced by a less effective enzyme. For fiber work, a new enzyme has received AOAC approval and is rapidly displacing other amylases in analytical work. This enzyme is available from Sigma (Number A3306; Sigma Chemical Co., St. Louis, MO). The original publications for NDF and ADF (43, 53) and the Agricultural Handbook 379 (14) are obsolete and of historical interest only. Up to date procedures should be followed. Triethylene glycol has replaced 2-ethoxyethanol because of reported toxicity. Considerable development in regard to fiber methods has occurred over the past 5 yr because of a redefinition of dietary fiber for man and monogastric animals that includes lignin and all polysaccharides resistant to mammalian digestive enzymes. In addition to NDF, new improved methods for total dietary fiber and nonstarch polysaccharides including pectin and beta-glucans now are available. The latter are also of interest in rumen fermentation. Unlike starch, their fermentations are like that of cellulose but faster and yield no lactic acid. Physical and biological properties of carbohydrate fractions are more important than their intrinsic composition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fat deposition, fatty acid composition and meat quality: A review.

            This paper reviews the factors affecting the fatty acid composition of adipose tissue and muscle in pigs, sheep and cattle and shows that a major factor is the total amount of fat. The effects of fatty acid composition on meat quality are also reviewed. Pigs have high levels of polyunsaturated fatty acids (PUFA), including the long chain (C20-22) PUFA in adipose tissue and muscle. The full range of PUFA are also found in sheep adipose tissue and muscle whereas cattle 'conserve' long chain PUFA in muscle phospholipid. Linoleic acid (18:2n-6) is a major ingredient of feeds for all species. Its incorporation into adipose tissue and muscle in relation to the amount in the diet is greater than for other fatty acids. It is deposited in muscle phospholipid at a high level where it and its long chain products eg aracidonic acid (20:4n-6) compete well for insertion into phospholipid molecules. Its proportion in pig adipose tissue declines as fat deposition proceeds and is an index of fatness. The same inverse relationships are not seen in ruminant adipose tissue but in all species the proportion of 18:2n-6 declines in muscle as fat deposition increases. The main reason is that phospholipid, where 18:2n-6 is located, declines as a proportion of muscle lipid and the proportion of neutral lipid, with its higher content of saturated and monounsaturated fatty acids, increases. Oleic acid (18:1cis-9), formed from stearic acid (18:0) by the enzyme stearoyl Co-A desaturase, is a major component of neutral lipid and in ruminants the same enzyme forms conjugated linoleic acid (CLA), an important nutrient in human nutrition. Like 18:2n-6, α-linolenic acid (18:3n-3) is an essential fatty acid and is important to ruminants since it is the major fatty acid in grass. However it does not compete well for insertion into phospholipid compared with 18:2n-6 and its incorporation into adipose tissue and muscle is less efficient. Greater biohydrogenation of 18:3n-3 and a long rumen transit time for forage diets also limits the amount available for tissue uptake compared with 18:2n-6 from concentrate diets. A positive feature of grass feeding is that levels of the nutritionally important long chain n-3 PUFA are increased ie EPA (20:5n-3) and DHA (22:6n-3). Future research should focus on increasing n-3 PUFA proportions in lean carcasses and the use of biodiverse pastures and conservation processes which retain the benefits of fresh leafy grass offer opportunities to achieve this. The varying fatty acid compositions of adipose tissue and muscle have profound effects on meat quality. Fatty acid composition determines the firmness/oiliness of adipose tissue and the oxidative stability of muscle, which in turn affects flavour and muscle colour. Vitamin E is an essential nutrient, which stabilises PUFA and has a central role in meat quality, particularly in ruminants.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Melatonin reprogramming of gut microbiota improves lipid dysmetabolism in high-fat diet-fed mice

                Bookmark

                Author and article information

                Contributors
                Journal
                Anim Nutr
                Anim Nutr
                Animal Nutrition
                KeAi Publishing
                2405-6545
                2405-6383
                10 October 2020
                December 2020
                10 October 2020
                : 6
                : 4
                : 499-506
                Affiliations
                [a ]Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
                [b ]Hubei Zhiqinghe Agriculture and Animal Husbandry Co., Ltd., Yichang, 443106, China
                [c ]Animal Sciences Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, 38000, Pakistan
                [d ]Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
                Author notes
                []Corresponding author. yhs@ 123456hunnu.edu.cn
                [1]

                These authors contributed equally to this work.

                Article
                S2405-6545(20)30099-8
                10.1016/j.aninu.2020.05.008
                7750792
                33364466
                74c3a600-9ef0-4c8a-8263-3615b8814d2c
                © 2020 Chinese Association of Animal Science and Veterinary Medicine. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 5 November 2019
                : 23 April 2020
                : 15 May 2020
                Categories
                Original Research Article

                female hu lambs,energy level,growth performance,meat quality

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content169

                Cited by17

                Most referenced authors1,014