7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Review—An Overview on Recent Progress in Screen-Printed Electroanalytical (Bio)Sensors

      , ,
      ECS Sensors Plus
      The Electrochemical Society

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Portability is one of the essential keys in the development of modern analytical devices. Screen printing technology is an established technology for both chemical and biosensor development. Screen printing technology has been used to generate a variety of electronic sensors that are rapid, cost-effective, on-site, real-time, inexpensive, and practical for use in healthcare, environmental monitoring, industrial monitoring, and agricultural monitoring. This review aims to describe recent research progress related to the development and improvement of screen-printed electrodes (SPEs). We also demonstrate the wide range of applications, also highlighting the market directions and the need for novel devices to be used by non-specialists. Finally, we conclude and provide an overview of the constraints and future opportunities of SPEs in biosensor application.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: not found
          • Article: not found

          Wearable biosensors for healthcare monitoring

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Electrochemical detection for paper-based microfluidics.

            We report the first demonstration of electrochemical detection for paper-based microfluidic devices. Photolithography was used to make microfluidic channels on filter paper, and screen-printing technology was used to fabricate electrodes on the paper-based microfluidic devices. Screen-printed electrodes on paper were characterized using cyclic voltammetry to demonstrate the basic electrochemical performance of the system. The utility of our devices was then demonstrated with the determination of glucose, lactate, and uric acid in biological samples using oxidase enzyme (glucose oxidase, lactate oxidase, and uricase, respectively) reactions. Oxidase enzyme reactions produce H2O2 while decomposing their respective substrates, and therefore a single electrode type is needed for detection of multiple species. Selectivity of the working electrode for H2O2 was improved using Prussian Blue as a redox mediator. The determination of glucose, lactate, and uric acid in control serum samples was performed using chronoamperometry at the optimal detection potential for H2O2 (0 V versus the on-chip Ag/AgCl reference electrode). Levels of glucose and lactate in control serum samples measured using the paper devices were 4.9 +/- 0.6 and 1.2 +/- 0.2 mM (level I control sample), and 16.3 +/- 0.7 and 3.2 +/- 0.3 mM (level II control sample), respectively, and were within error of the values measured using traditional tests. This study shows the successful integration of paper-based microfluidics and electrochemical detection as an easy-to-use, inexpensive, and portable alternative for point of care monitoring.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Electrochemical glucose biosensors.

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                ECS Sensors Plus
                ECS Sens. Plus
                The Electrochemical Society
                2754-2726
                May 27 2022
                June 01 2022
                May 27 2022
                June 01 2022
                : 1
                : 2
                : 023401
                Article
                10.1149/2754-2726/ac70e2
                74b069d2-4af3-4db0-8c5e-2b770cf0bb08
                © 2022

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article